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ABSTRACT

This report describes the results of a 2-year study of the

mechanism of spall failure in the HPOTP bearings. The objective

was build a foundation for detailed analyses of the contact life

in terms of; (i) cyclic plasticity, (ii) contact mechanics, (iii)

spall nucleation and (iv) spall growth. Since the laboratory

rolling contact testing ......carried out in the 3-ball-rod contact

fatigue testing machine, the analysiss of the contacts and

contact lives produced in this machine received attention.

The analysis of previous cyclic stress-strain hysteresis

loop measurements of 440C steel was refined to account for the

plasticity of the fillet regions. In addition, the hysteresis

loop shapess of the hardened 7075 aluminum alloy were measured.

In both cases the elastic-linear-kinematic-hardening-plastic

(ELKP) loop parameters were evaluated. Elasto-plastic, finite

element analyses of the repeated, 3-dimensional, frictionless,

rolling contact produced in the 3-ball-rod testing machine at

Hertzian pressures of Po = 2.4, 4.0 and 5.4 GPa (for 440C steel)

and 1.25 GPa (for hardened aluminum) were carried out using the

appropriate ELKP-loop parameters. These calculations were also

extended for 440C steel properties to 3-dimensional rolling-plus-

sliding and to the 2-dimensional (line contact) thermal-

mechanical coupled rolling-plus-sliding with frictional heating.

The results of calculations are compared with observations of

aluminum rods subjected to contact under these conditions.

Rolling contact tests of the 440C steel and the hardened

aluminum were performed in the 3-ball-rod testing machine with

smooth and roughened balls. Efforts were made to evaluate the

effects of retained austenite. A series of tests were performed

on the 440C samples with small = i00 _m indentations in the

running track which make it possible to locate and follow the

progress of spall nucleation and growth. The results define the

spall nucleation- and spall growth-component of the contact life

of the 440C steel over a range of the contact pressures. They

also provide evidence for a threshold pressure for crack growth.

In addition, the 3-dimensional features of the spall were studied

by a novel replicating technique and metallographic sections of

the spalls.

The contributions to the fracture mechanics crack growth

driving force for surface breaking cracks arising from the

Hertzian stresses, surface irregularities, fluid in the crack

cavity, centrifugal stresses and thermal stresses are reviewed

and the results of 2- and 3-dimensional analyses are compiled and

compared. New calculations for the Bower model of a 2-dimensional

surface breaking crack with fluid pressure in the crack cavity

are pressented. A numerical expression for the Mode I crack

driving force for a 3-dimensional crack with fluid in the crack

cavity is used to calculate the spall growth component of the

contact life. These calculations are compared with and are in

reasonable agreement with the measurements of spall growth.
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i. INTRODUCTION

i.i Background

Spall failures limit the life and performance of the HPOTP

bearings in the space shuttle main engines. While the general

features of spalling are known, detailed quantitative analyses of

the contact life in terms of contact geometry, loading and basic

material properties have not been developed. As a consequence,

efforts to improve life proceed by trial and error and are close-

ly tied to uncertain and time consuming laboratory testing--

uncertain because the laboratory tests do not reproduce the

service conditions.

The analysis of contact life is complicated by the existence
of 2 distinct failure modes that result from 2 sources of contact

plasticity (Hahn and Rubin, 1990):

• Subsurface Oriqinated Spall Failure. This is caused by

the translating, Hertzian pressure pulse which produces peak

amounts of cyclic plasticity and damage in an annular layer at a

depth, z _ 0.5 w (2w is the contact width) below the surface.

• Near-Surface Oriqinated Spall Failure. This is produced

by the cyclic plasticity and damage produced just below the

running track at depths, z = 1 _m to 50 _m, caused by several

sources: (i) stationary pressure spikes produced by surface

irregularities, asperities, debris dents, etc, (ii) tractions

arising from the sliding of the contact with friction, and (iii)

thermal stresses from frictional heating.

The distinction is important because both the nature of the

cyclic deformation and damage leading to spall nucleation, and

the mechanism of growth of the spall are different for the 2

modes. Both the observations of spalls in the HPOTP bearings

(Bhat and Dolan, 1982) and the results of this study support the

view that the failures of the 440C steel bearings are of the

near-surface mode.

Work aimed at improving the performance of the HPOTP bear-

ings can benefit from an analysis of the near-surface spall

failure mode composed of the following elements:

(i) Cvclic Plasticity. The definition of the continuing,

near-surface cyclic plasticity. This is governed by the shape

of the cyclic stress-strain hysteresis loop of the steel. While

the 440C loop shapes were measured in a previous NASA-supported

study (Kumar et al., 1987), subsequent work revealed that the

analysis of the measurements requires improvement. The
connections between the materlai microstructure and the stress-

strain properties must be clarified.



(ii) Contact Mechanics. The definition of the cyclic

plasticity must also draw on the mechanics of contact. This can

be treated using elasto-plastic finite element methods. In the

previous work (Kumar et al., 1987) the present authors have

devised finite element analyses of 2-dimensional (line contact)

rolling-plus-sliding, and rolling-plus-sliding with heat

generation (Kulkarni et ai., 1991). These methods need to be

extended to the 3-dimensional contact, refined and critically

tested. -.....................................

(iii) Crack Nucleation. The rates with which the continuing

cyclic plasticity lead to the accumulation of damage and crack

nucleation must be formulated. The work to accomplish this is

in its early stages (Keer et al., 1986) and can benefit from

experimental determinations of the nucleation component of the
contact life and the factors that influence it.

(iv) Spall Growth. The rate of spall growth must be

evaluated. This is governed by the fracture mechanics driving

force and the steel's Mode I, II and III, da/dN- _K

characteristics. The cracks produced by the near-surface mode

become surface breaking at an early stage of their life. As a

result, the driving force is amplified by the pressure of

lubricant fluid forced in the crack cavity (Bower, 1988). In the

absence of lubricant, thermal stresses arising from frictional

heating enhance the crack driving force (Goshima and Keer, 1990).

The analysis of the growth life calls for calculations of the

driving force for small surface-breaking cracks containing fluid

pressure as well as measurements of relevant da/dN- K

properties of the material. Finally, there is a pressing need

for measurements of the spall growth component of the contact

life that can be used to test the reliability of the fracture

mechanics method ..........

1.2 Summary

This report describes the results of a 2-year follow-on to

an earlier NASA-supported study on the mechanism of spall

failure in the HPOTP bearings (Kumar et al., 1987). The

objective was to build a foundation for detailed analyses of the

contact life along the lines described above. Since much of the

laboratory rolling contact testing is carried out in the 3-ball-

rod contact fatigue testing machine, the analysis of the contacts

and contact lives produced in this machine received attention.

The following tasks were undertaken:

(i) Cyclic Plasticity. The analysis of the previous

cyclic, stress-strain hysteresis loop measurements of 440C steel

was refined to account for the contribution of plasticity in the

fillet regions. In addition, the stress-strain hysteresis loop

shape of the hardened 7075 A1 alloy was measured and the elastic-
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linear-kinematic-hardening plastic- (ELKP-) loop parameters were

evaluated. These studies are described in Sections 2.3 and 2.4.

The results are incorporated in 3-dimensional, elastoplastic,

finite element analyses of the 3-ball-rod testing machine contact

conditions described in Section 3.

(ii) Elasto-Plastic Finite Element Analyses. E 1 asto-

plastic, finite element analyses of the 3-dimensional rolling

produced in the Federal Mogul/Bowers/NTN, 3-ball-rod testing

machine at several contact pressures were carried out using both

the 440C steel and 7075 aluminum ELKP loop parameters (see

Sections 3.3 and 3.4). The calculations are compared in Section

3.4 with experimental observations on aluminum rods (tested in

the 3-ball-rod testing machine) that characterize the size and

shape of the 3-dimensional contact cyclic plastic zone and the

propensity for subsurface crack nucleation and growth. In

addition, the finite element calculations were extended to 3-

dimensional rolling-plus-sliding (Section 3.3) and to the 2-

dimensional (line contact) thermal-mechanical coupled problem for

440C steel, ELKP loop properties (Section 3.5).

(iii) Fracture Mechanics Analyses of Surface Breaking

Cracks. Contributions to the crack growth driving force from

the Hertzian stresses, surface irregularities, fluid in the crack

cavity, centrifugal stresses and thermal stress are reviewed and

the results of different 2-dimensional and 3-dimensional analyses

compiled and compared in Section 4.4. New calculations for the

Bower model of a 2-dimensional surface breaking crack with fluid

in the crack cavity were carried out and are presented in Section

4.3. The implications of the driving force values with respect

to the threshold crack size were examined (Section 4.5).

(iv) Retained Austenite. Efforts were made to
evaluate the effects of retained austenite in 440 C steel on the

contact life and these are described in Section 5.3.

(v) Measurements of the Nucleation and Growth Lives.

The separate contributions of nucleation and growth components of

the contact lives of 440C steel rods tested in the 3-ball-rod

testing machine were measured. These experiments also reveal

effects of surface roughness and a threshold crack size for spall

growth. This is presented in Sections 5.4 and 5.5.

(vi) Characterization of the 3-Dimensional Spa_!.

A novel replication technique was developed to find the three

dimensional features of the spalls, this technique is reported in

Section 5.6. This section also reports the results of

metallographic investigation of the main geometric features of

the spall.

(vii) Evaluation of the Fracture Mechanics Driving Force

for Spall Growth. Calculations were performed to determine the



Mode II crack driving force under different conditions, as
reported in Section 4.3. These results were compared with other
works which accounted for thermal loading and three dimensional
effects, and are reported in Section 4.4. The critical, i.e.
threshold, crack sizes were evaluated in light of the above
mentioned results in Section 4.5.

(viii) Analysis of the arowth life. An attempt is made to

compare the experimentally observed lives with those predicted

based upon the results drawn in (vii). The conclusions are

reported in Section 4.6.
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2. CYCLIC STRESS-STRAIN PROPERTIES

2.1 Background

The continuing cyclic plasticity, which accompanies rolling

contact when the Hertzian contact pressure exceeds the shakedown

limit, damages the material and may ultimately lead to spall

nucleation (Hahn and Rubin, 1990). The plasticity may also

assist the process of cyclic crack growth (Bastias, 1990). Both

the value of the shakedown pressure and the amounts and distribu-

tion of cyclic plasticity that occurs above shakedown depend on

the material's resistance to plasticity (Merwin and Johnson,

1963, Bhargava et al., 1985, 1990, Hahn et al., 1987, Hahn and

Rubin 1990). For the case of repeated contacts which produce

essentially fully reversed cyclic plasticity, the resistance is

given by the shape of the stress-strain hysteresis loop (Hahn et

al., 1990). The constitutive relations that describe the loop

shape must be incorporated into the finite element models of

contact described in Section 3.

In the past, it has been common practice to treat the cyclic

plasticity as isotropic and elastic-perfectly-plastic (EPP). The

loop produced by this highly idealized behavior, shown

schematically in Figure 2.1a, can be described by 2 parameters:

the elastic modulus, E, and the shear yield strength, k. Figure

2.1b illustrates that the loop shapes of 440C steel and other

bearing steels are not approximated by EPP-behavior. The real

loops display rapid strain hardening and kinematic behavior

(Hahn et al., 1990). To improve the analyses, the authors have

devised a bilinear, 3-parameter elastic-linear-kinematic-

hardening-plastic (ELKP) representation of the loop illustrated

in Figure 2.2a (Hahn et al., 1987, Hahn et al., 1990). The loop

parameters: the elastic modulus, G, the kinematic shear yield

strength, kk, and the plastic modulus, MS, are defined in Figure

2.2a. The relations between these parameters and the

conventional parameters defined in Figure 2.2a, including the
stress amplitude, _a, and the energy dissipated (loop area), U ,

are given in Table 2.1.

In an earlier report (Kumar et al., 1987) the authors

described the results of cyclic torsion tests performed on

hardened 440C steel which were used to evaluate the ELKP

parameters. These analyses assumed that the contribution of the

fillet region could be neglected. Subsequent work showed this to

be a poor approximation and a method for accounting for the

plasticity of the fillet was devised (Hahn et al., 1990). This

method has been employed here to analyze the measurements

reported earlier so as to provide more reliable values of the

parameters for 440C steel.

In addition, cyclic torsion tests were performed on hardened

7075 aluminum, to establish the ELKP-parameters for finite

L
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Figure 2.1 Shear stress-shear strain hysteresis loops: (a)

the loop for idealized, isotropic, elastic-

perfectly-plastic (EPP) behavior, and (b) the

loops displayed by 440C steel after N=I5 and N=250

stress cycles. While the EPP-loop is drawn so

that its 0.035%-offset, shear yield strength

corresponds with that of the N=I5 loop of the 440C

steel, it is clear that the EPP loop does not come

close to representing the cyclic stress-strain
behavior of the steel.
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Figure 2.2 Schematic of the bilinear, 3-parameter, elastic-

linear-kinematic-hardening-plastic (ELKP)

representation of the hysteresis loop: (a)

conventional form employed for 440C steel and (b)

special form employed for 7075-T6 aluminum to

accommodate the differences in the elastic modulus

in tension and compression. The 3 ELKP-parameters

are: (for tension-compression) the elastic

modulus, E, the kinematic yield strength, ak, and

the plastic modulus (G, kk, and M s for torsion).

The relations between these parameters and more

conventional parameters are given in Table 2.1.
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Table 2.1 Relationship Between the ELKP Loop Parameters:

E, Ok, M,nand the Conventional Properties of the

Loo n •

g

I

o e = U k - [ E M / (E - M) ] _eP/2 ± o m

ao,c(0.02% ) = a k - [ E M / (E - M)] (_EP/2 - 0.0002) ± am

a a = a k + [ E M / (E - M)] _EP/2

U' = 2 o k 6P

m
u

g

J

m w

M

a k

O e

aOC(0.02% ) -

a a

o m
A_ P/2

U'

Young's Modulus

Kinematic Hardening Modulus

Kinematic yield strength

Cyclic elastic limit (measured from zero stress)

Cyclic, 0.02% offset yield strength (measured from

zero stress)

Stress amplitude

Mean stress

Plastic strain amplitude

Per cycle plastic work or loop area
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element analyses of rolling contact for this material for reasons
mentioned in Sections 3.4.

2.2 Experimental Procedures

The Cyclic torsion tests were carried out on hollow cylin-

drical 440C using the procedures described in a previous report

(Kumar et al., 1987). The cyclic torsion tests were plastic

strain amplitude controlled. The torque-rotation loop was

recorded, converted into a shear stress-shear strain hysteresis

loop, the ELKP-parameters: the kinematic shear yield strength,

kk, the plastic modulus, MS, described, and the equivalent

tensile values, a_ and M, were evaluated (Hahn et al., 1990).
Unlike the analysls employed in the previous report (Kumar et

al., 1987) the procedure accounted for the plastic contribution

of the filler regions, which is significant (Hahn et al, 1990).

The studies performed on the hardened 7075-T61 aluminum

alloy were carried out in uniaxial, push-pull fatigue. The test

bar is illustrated in Figure 2.3. The average hardness of the

as-heat treated samples was HRB-87 (HK-170). The test pieces for

the 3-ball-rod testing machine, referred to in Section 3.4, were

machined from the same stock and heat treated in the same way.

The shapes of the cyclic stress-strain hysteresis loops obtained

under conditions of constant strain amplitude were measured at

room temperature at a frequency of f=0.75 Hz with a servohydrau-

lic testing machine by manually adjusting the stress amplitude.

The axial strain was measured with an extensometer attached to

the gage section and the hysteresis loops were periodically

recorded and analyzed with a high speed data acquisition system

programmed to evaluate the ELKP-parameters, _k and M. The

details of the procedure are similar to the one used to analyze

the axial torsion tests mentioned above (Hahn et al., 1990).

In the case of the 7075-T6 aluminum, the slope of the

elastic portions of the loop on the tensile side, E = 68.6 GPa,

is significantly lower than the slope on the compression side of

the loop, E = 71.5 GPa, as shown schematically in Figure 2.2b.

These values do not change with number of stress cycles. When

the difference in the values of the slopes was recognized and

accounted for, as in Figure 2.2b, the values of a k and M for the

tensile and compressive portions of the cycle were in close

agreement. To simplify the treatment of the constitutive

relation, the averages of the values of E, a K and M obtained

from the tensile and compression part of the cycle are quoted and

were inserted in the finite element analyses reported in Section

1 Composition and heat treatment of the 7075 aluminum alloy:

Zn-5.6, Mg-2.5, Cu-l.6 and Cr-0.23; the alloy was solution

treated at 870°F, spray quenched in water and aged at 250°F for
24 hours.
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3.4. The difference between the tension and compression modulus

observed here is similar to that quoted in the ASM Metals

Handbook (Vol.2, 9th Edition, 1979). The origin of the

difference is not known to the authors. It is possible that a

large number of the small, 5 #m diameter particles, in the alloy

may rupture during the tensile portion of the first few stress

cycles producing small cracks that reduce the stiffness in

tension but not in compression.

2.3 Cyclic Stress-Strain Properties of 440C Steel

Results of the hysteresis loop measurements are summarized

in Figures 2.1b, 2.4-2.7 and in Table 2.2. Examples of the

hysteresis loops displayed by 440C steel samples are reproduced

in Figure 2.1b. The 0.035% shear strain offset (equivalent to an

0.02% tensile strain offset) is marked by the short horizontal

tick in Figure 2.1b. The application of a mean stress produces

a not-fully reversed loop -- more plasticity in one direction

than in the other. However, the non-reversibility 2 diminishes

with increasing number of cycles and effectively disappears after

N-103 cycles as shown in Figure 2.4. This is viewed as evidence

that the cyclic behavior closely approaches kinematic behavior

after N _ 103 cycles. The systematic decrease of the conven-

tional cyclic yield strength, OOC , with increasing plastic strain

amplitude, and the negative value of this quantity at the largest

strain amplitude, are also incompatible with isotropic behavior
and consistent with kinematic behavior.

The variation of the kinematic yield strength, ak, with

numbers of cycles is shown in Figure 2.5. All of the samples

display noticeable cyclic hardening -- increases in a k with

number of cycles -- during their relatively short lives: 300 < N

< 600, and are still hardening after N = 600 cycles. The near-

end-of-life values 3 reported in Table 2.2 represent a lower bound

estimate of the kinematic yield strength appropriate for large

numbers of cycles, e.g. N = 106 to 109 . These _k-values are

about 15% lower than the values reported earlier which were

obtained neglecting the plasticity in the fillet regions. The

values of the plastic modulus, M, in Figure 2.6 show virtually no

dependence on the number of cycles. These values are about 2%

smaller than those reported earlier.

w

m

2 Non-reversibility is defined as: NR = l-ePf/ePr, where

6Pf is the plastic strain increment in the forward direction and

6P r is the increment in the reverse direction. Non-

reversibility is associated with isotropic cyclic behavior and is

absent for kinematic cyclic behavior. The decay of the non-

reversibility is symptomatic of the approach to kinematic behavior.
z

3 Values for the largest number of stress cycles that

appear unaffected by the nucleation and growth of a crack.

i
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Table 2.2 Near-end-of-_ife values of the hysteresis loop

parameters for 440-C steel.

16
m

g

mm

Specimen EP 7m N F N o k aoc _a M

ID (MPa) (MPa) (MPa) (MPa) (SPa)

I

D7

D8

D9

DI0

0.0005 0 608 500 926.0 978.9 1671.7 193.5

0.001 0 284 250 1063.7 715.5 1736.3 182.3

0.002 0 305 300 719.9 -297.2 1736.9 167.7

0.001 200 351 350 746.0 225.1 +923.0 180.6

-642.7

mm

m

l

l

Average 864.0 181.0
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N F
N

a a

M

w

m

Plastic strain amplitude

Shear mean stress

Number of cycles to failure

Number of cycles at near-end-of-life beyond which the

loop parameters are affected by the growing crack.

Kinematic yield strength

Cyclic, 0.02% offset yield strength (measured from

zero stress)

Stress amplitude

Plastic modulus
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The area of the hysteresis loop corresponds with the plastic

work, the bulk of which is converted to heat. Figure 2.7 shows

that the area of the bilinear, ELKP-Ioop (U' = 2. _P.ak) is a

good approximation of the actual loop area for small strain

amplitudes. The variation of the cyclic life with strain

amplitude can be approximated by the relation: N=A(_P/2) m where

A = 7.94 and m = -0.5.

2.4 Cyclic Stress-Strain Properties of 7075-T6 Aluminum

Results of the hysteresis loop measurements for the hardened

aluminum alloy are summarized in Figures 2.8 - 2.15 and in Table

2.3. Examples of the hysteresis loops are shown in Figure 2.9.

The horizontal ticks mark the 0.02% plastic strain offset.

Figure 2.9 illustrates that the loop shape changes little in the

range 20 < N < 780 stress cycles. Figure 2.10 illustrates the

loop shapes produced by cycling with a mean stress _M = -i00 MPa.

Initially, the mean stress produces a non-fully reversed loop.

As is the case with the 440C steel, the non-reversibility, NR,

decays with increasing number of cycles. The loop is essentially

fully reversed after N = 330 strain cycles. This, and the

observations that the ELKP parameters are insensitive to mean

stress (see Table 2.3) while the conventional parameters show a

dependence, are consistent with kinematic behavior. Figures 2.11

and 2.12 show that none of the loop parameters, conventional and

ELKP, are sensitive to strain amplitude in this case.

The kinematic yield strength, plastic modulus and stress

amplitude change very little with increasing number of stress

cycles as shown in Figures 2.13 - 2.15. In the absence of

significant cyclic hardening, the near-end-of-life values listed

in Table 2.3 appear to be useful estimates of the ELKP-parameters

appropriate for large numbers of stress cycles. Figure 2.16

shows that the ELKP-parameters provide a reasonable description

of the loop area.

2.5 Discussion and Conclusions

The ELKP-parameters derived from the hysteresis loops of the

440C steel are very similar to those previously found for har-

dened 1070 and 52100 bearing steel (Hahn et al., 1990). For this

reason, the previous average values, modified slightly to account

for a strain rate effect: a k = 1050 MPa and M = 188 GPa which are

reasonable approximations for all three materials, have been used

in the finite element calculations of rolling contact described
in Section 3.

The hysteresis loop measurements performed on the 7075-T6

aluminum reveal that while the resistance of this material to

cyclic plasticity is 1/3 to 1/2 of that displayed by 440C steel,

the cyclic plastic behavior is kinematic, and analogous to the

cyclic behavior of 440C. The use of aluminum as a model material
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offers several new opportunities which are explored in Section 3.

For one thing, the cyclic plasticity generated in hardened

aluminum can be revealed metallographically, and this offers a

way of testing elastoplastic finite element analyses of rolling

contact. Secondly, the subsurface contact failure proceeds in
as little as N -106 contacts in hardened aluminum even at

relatively modest relative contact pressures. These may provide

opportunities for studying the effects of residual stresses and
material variables on the process and for testing fracture

mechanics analyses of spall growth.
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3. FINITE ELEMENT ANALYSES

3.1 Background

This section describes finite element calculations of the

plasticity and residual stresses produced by repeated contact in

the 3-ball-rod rolling contact fatigue testing machine. The

machine is used in this study (see Sections 5.2) and by other

investigators to evaluate material resistance to rolling contact

failure. Detailed analyses of the test results and their in-

terpretation must take into account the two distinct failure

origins described in Section i.i, as well as the cyclic

plasticity present at those places.

Service contact failures can be of either the subsurface of

near-surface type. However, the work described in Section 5

shows that the failure of 440C steel obtained with the 3-ball-rod

tester with standard roughened balls and ground rods are of the

near-surface type. Consequently, the calculations in this

section are not directly applicable to the test results. The

calculations would be relevant for tests performed with the 3-

ball-rod machine with lapped balls and rods that produce sub-

surface failures.

Three dimensional, elastoplastic calculations of repeated

contact are complex and, until recently, relatively little

progress has been made. A brief summary of work in this field

follows.

A review by Johnson (1986) examines the possible mechanisms

of failure and predicts the nature of the residual stress state.

Ponter et al. (1985) apply the kinematical shakedown theorem to

investigate the mode of deformation for rolling and sliding point

contacts. The authors calculate optimal upper bounds for both the

elastic and plastic shakedown limits for varying coefficients of

friction and shapes of the loaded ellipse. Bower et al. (1986)

used the above mentioned theorem to closely look at the

conditions under which cumulative deformation occurs in the

corner of a railhead, assuming elastic-perfectly plastic

behavior. The study was further extended to a work-hardening

quarter space. Hills and Sackfield (1984) studied the yield and

shakedown states in the contact of generally curved bodies, with

and without friction. Hills and Sackfield (1983a, 1983b, 1986)

have done additional work treating the point contact problem

mathematically.

Kalker (1979) has developed a computer code for treating

elastic 3-dimensional rolling contact with dry friction. Kannel

and Tevaarwek (1984) presented a computer model for evaluating

the subsurface stresses incurred during rolling-sliding contacts.

Hardy et al. (1971) developed a finite element model of a rigid

sphere indenting (not rolling on) an elastic-perfectly plastic
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half-space. Equations were obtained by Hamilton and Goodman

(1966) for the complete stress field due to a circular contact

region carrying a 'hemispherical' Hertzian normal pressure and a

proportionally distributed shearing traction. Chiu and Hartnett

(1983) have presented a numerical method of solution for three-

dimensional Hertzian contact problems involving layered solids.

Hills and Ashelby (1982) have analyzed the residual stresses and

their influence on the contact load bearing capacity for 3-

dimensional rolling. Rydholm and Fredriksson (1981) devised a

finite element model for analyzing shakedown problems in 3-

dimensional rolling contacts for elastic-perfectly plastic and

kinematic hardening material responses. Martin and Hay (1972)

developed a 3-dimensional finite element model to analyze the

yielding of a rail material, the subsequent development of

residual stresses, and plastic flow due to a moving load. Line

contact of two cylinders or of a cylinder and a half-space, with

plane strain deformation, has also been studied in detail by

Bhargava et al. (1985a, 1985b, 1986), Merwin and Johnson (1963)

and Johnson and Jefferies (1963).

Ghonem and Kamath (1984) and Bhargava et al. (1986) have

demonstrated that the cyclic stress strain properties of rail

steel approach elastic-linear-kinematic-hardening plastic

(ELKP) behavior after 103 < N < 104 cycles. Kinematic behavior

can be expected to produce significantly different continuing

plastic deformation and residual stresses. This was confirmed by

Bhargava et al. (1988a) in a 2-dimensional elasto-plastic finite

element study, where it was found that the residual stresses were

50%, and the cyclic strains were an order of magnitude smaller,

for ELKP than for EPP calculations at comparable relative peak

pressures. McDowell and Moyar (1986) used a Mroz type kinematic

hardening rule (which has been proven to be reliable for non-

proportional loading) to perform an approximate numerical

calculation for 2-dimensional rolling-sliding contact,

incorporating rail steel properties. The experimental work by

Bower and Cheesewright (1988) and calculations by Bhargava et al.

(1988b) reinforce the view that the rail-wheel contact must be

treated as a 3-dimensional problem.

Repeated contact loading for highly stressed mechanical

components is accompanied by small amounts of continuing

plasticity. The plastic deformation produces net shape changes,

residual stresses, and may lead to the nucleation and growth of

cracks. The effect of contact loads have been experimentally

studied by Groom (1983) and Bower and Cheesewright (1988).

Though there exist a number of treatments of the 3-dimensional

problem of rolling contact, the information obtained is limited.

Most of the analyses employ elastic (Johns and Davies (1976),

Hellier et al. (1986)), or elastic-perfectly plastic (Martin and

Hay (1972), Johns and Davies (1976), Keer et al. (1986), Orkisz

et al. (1986)) material behavior. Some of them evaluate the

shakedown limits and provide peak values of certain normal
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residual stresses. However, there is very little information on
residual stresses, strains and plastic strain range distributions
in the half space, especially in the vicinity of the contact.
Only two of the studies deal with the stress-strain history
(Ponter et al. (1985), Bower et al. (1986)).

Previous analyses have required arbitrary simplifying
assumptions; for example, in theoretical studies certain stresses
were neglected, and in finite element studies the boundaries were
assumed to be rigid. For three-dimensional contact, all six
components of residual stress are possible, and they are
functions of the position of the material point with respect to
the load. In addition, out-of-plane plasticity is expected in 3-
dimensional contact. Overall, the cyclic stress-strain variation
is much more complex than in a 2-dimensional configuration.

A physically more accurate treatment of the 3-dimensional
frictionless rolling contact problem has been presented by
Kulkarni et al. (1988, 1990a, 1990b, 1990c), by means of a finite
element calculation. This model addresses the elastic
displacement of the boundaries and incorporates the
experimentally observed elastic-kinematic-hardening-plastic
constitutive behavior. This model is used for the present
calculations and is described below. Du et al. (1990) have
extended Kulkarni's model to account for the presence of surface
shear tractions. Initial calculations are introduced and compared
to those resulting for the pure rolling case. These methods are
adapted here to the 3-ball-rod tester contact geometry.

The mechanisms of elasto-plastic rolling-plus-sliding
contact with friction, in the absence of heating, has been
examined by Johnson and Jefferies (1963) and Ham et al. (1988).
In reality, the heating that accompanies friction will introduce
thermal stresses and locally alter the elastic and plastic
properties of the material. Existing literature predominantly
deals with a) surface limited analyses: Barber (1971a, 1972,
1973a, 1976, 1980a, 1980b, 1982) , Comninou and Dundurs (1979),
Comninou et al. (1981), Hills and Barber (1986), Korovchinski

(1965), Mikic (1974), Panek and Dundurs (1979), and b) the

contact of rough surfaces, including flash temperatures (the

localized transient temperatures due to asperity contact) :

Archard (1959) , Blok (1937, 1963), Holm (1948) , Kuhlman-Wilsdorf

(1985), Nagaraj et al. (1979), Winer and Cheng (1980) and Zumgahr

(1987) .

Many studies have examined the competing processes of: a)

frictional heating at the contact interface and the resulting

thermal expansion with b) heat transfer and wear. The unstable

increases in the contact stress, known as thermoelastic

instability (TEI) have been investigated by: Barber (1967, 1968,

1969, 1971b, 1973b), Burton et al. (1973), Dow (1972), Dow and

Burton (1972, 1973), Dow and Stockwell (1977) and Johnson et al.
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(1988). The manifestation of TEI as scuffing has been studied by

Durkee (1978), Durkee and Cheng (1979), and Sovak and Cheng

(1982). Except for Newman (1986), who has developed an elasto-

plastic finite element model to study the stress field in welded

plates, all the investigations discussing the subsurface effects

of thermomechanical contact are elastic: Kennedy and Karpe

(1982), Ling and Mow (1965),_Mow and Cheng (1967) and Tseng and

Burton (1982).

Premature failure due to overheating of HPOTP bearings used

in the Space Shuttle Main Engine (Maurer and Pallini (1985),

Bhat and Dolan (1983)), confirms the need for an elasto-plastic

thermo-mechanical finite element model to simulate frictional

rolling contact more realistically. A preliminary step in that

direction was taken by Kulkarni et al. (1988) with the

introduction of a stationary thermo-mechanical analysis of a

conductive half plane with a convective surface subjected to the

combination of mechanical pressure and different thermal loads

(representing the heat generated due to friction). Although the

mechanical effect of the surface tractions and the cyclic nature

of the applied loads was not considered, the study established

the existence of varying levels of residual tensions proportional

to the attending temperature gradients. The work describes a

transient, translating, elasto-plastic, thermo-mechanical finite

element model of a 2-dimensional frictional rolling contact. The

temperature variations, stress-plastic strains distributions and

deformations are calculated _r ......specific contact conditions.

Additional work, now in progress, includes modelling of the

three-dimensional 3-ba!l-rod pure rolling contact experiments,

and three-dimensional roliing-plus-sliding studies.

The present work reports the results of several finite

element studies. Three-dimensional elasto-plastic finite element

models have been developed to study frictionless rolling and

rolling-sliding contact on a 3-ball-rod contact fatigue tester

configuration. These analyses have been performed for an AISI
440C steel and a 7075-T6 aluminum alloy. In addition, a two-

dimensional finite element mesh was developed to simulate

rolling-plus-sliding contact with heat generation. Descriptions

of the models and results of the analyses are presented below.

3.2 Analytical Procedures

Frictionless rolling of a sphere on a semi-infinite body is

simulated by translating a semi-ellipsoid pressure distribution
over one face of a three dimensional finite element mesh. The

finite element model is intended to reproduce the loading

conditions prevailing on the 3-ball-rod experimental set up

described by Glover (1982). A finite sized mesh, Figure 3.2.1,

is used to represent a semi-infinite body by applying the

appropriate elastic displacements on the other faces of the 3-

dimensional mesh. For this purpose the semi-ellipsoidal pressure
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distribution is discretized into numerous concentrated forces

directed along the z-axis.
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Rolling-plus-sliding is represented by adding to the above

mentioned pressure a distribution of shear tractions resulting
from considering uniform slip at the contact. The shear

tractions are obtained by first determining the "consistent nodal

forces" resulting from the application of the semi-elliptical
pressure distribution. These forces are the reaction forces which

would arise at the nodes on the top surface, were these

constrained to move along the z-direction. These nodal reactions

are then multiplied by a constant friction coefficient and

applied along the y-direction.

The displacements of the boundary nodes are then calculated

for each of these concentrated forces along the y- and z-

directions using the appropriate solution to the Boussinesq's

problem, and then superimposing the solutions for many loads (the

relevant equations used for these calculations are presented in

Appendix I). Kulkarni et al. (1990a) have tested the accuracy of

the model against a closed form analytical solution for the

purely elastic indentation of a 3-dimensional space; there is

excellent agreement between the results. The same authors have

shown that the presence of the 'elastic' boundaries does not

affect the distribution of residual stresses.

Because of the symmetry of the pressure distribution about

the rolling direction, the 3-dimensional mesh has the shape of a

quadrant of a circle extended in the second dimension. The

present study, in the most general case, pertains to two

mechanical components in a three dimensional rolling situation,

and hence the x-axis will be referred to as the axial direction,

the y-axis, or the direction of translation of the load, as the

circumferential direction, and the z-axis as the radial

direction. The mesh is finer at the center, and coarser towards

the 'elastic' boundaries. The mesh is 10w I long in the

circumferential direction, and extends 5Wl. along the radial and
axial directions, where w I is the dimenslon of the semi-major
contact patch.

The mesh is made of 8-noded linear brick elements closer to

the boundaries, and more refined 20- and 27-noded quadratic

brick elements toward the center. There is a total of 1392

elements and 4649 nodes. The elasto-plastic material properties

for steel AISI 440C and aluminum alloy 7075-T6, as well as the

different loading schemes used in the calculations, are shown in

Table 3.2.1. Table 3.2.2 shows the different loading conditions

and geometries studied for the present report.

Three loading levels were analyzed for the pure rolling case

on steel, they will be hereafter referred to as high, medium and

low pressures. For the rolling plus sliding study on steel, only



Table 3 2.1 Material Parameter for 3-dimensional model
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Parameter AISI 440C AI. 7075-T6
W

Young's Modulus (GPa) 207.0

Poiss0n's Ratio 0.3

Kinematic Yield Strength (MPa) 1050.0

Hardening Modulus (GPa) 188.0

Kinematic Shear Yield Strength (MPa) 606.0

70.0

0.3

382.0

56.43

220.55
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Table 3.2.2 Loadin_ and Geometry for 3-dimensional model

a) Pure rolling - Aluminum

Load Peak Pressure _o/_kk 4

(N) (MPa)

47.8 1250.0 5.7

Geometry of ball

Semi Contact Width

MaSor MSnor

w I (m) w 2 (m)

1.79xi0 -4

R1 = 0.0127 m

R2 = 0.0127 m

Geometry of sample RI' = 0.004787 m

b) Pure rolling - Steel

Load Peak Pressure _o/kk I

1.02x10 -4

(N) (MPa)

1083.5 5412.0 8.93

438.1 3999.0 6.59

96.7 2413.0 3.98

c) Rolling-plus-Sliding - Steel

1083.5 5412.0 8.93

Semi Contact Width

MinoK

w I (m) w 2 (m)

4.0889xi0 -4

3.0237xi0 -4

1.8276xi0 -4

4.0889xi0 -4

Ratio of tangential to normal force = 0.i

Geometry of ball R1 = 0.0127 m

R2 = 0.0127 m

Geometry of sample RI' = 0.0048 m
R2' =

2.3073xi0 -4

1.7062xi0 -4

1.0312xi0 -4

2.3073xi0 -4

z:

i :

4 Po/k k = Ratio of Hertzian Peak

Shear Yield Strength.

Pressure to Kinematic
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the high pressure condition was analyzed. The ratio of the shear
traction to the normal force was assumed to be equal to 0.i.
Only one load level was analyzed in £he case of the aluminum
alloy.

The following assumptions are made for the analyses: a) the
contact area, which is calculated from the elastic material
properties and the geometry of the bodies, does not change after
the semi-infinite body begins to deform plastically, and b) the
applied pressure distribution remains Hertzian throughout the
analysis. The Hertzian pressure is applied at one end of the mesh
and incrementally translated through a distance of 8wI to the
other end of the mesh. The translational increments vary
according to the position of the load on the mesh. The first
increment, wI, is followed by two increments of 0.5wl, sixteen
increments of 0.25w I, two increments of 0.5w I and finally one
increment of wI before the mesh is unloaded. This loading
sequence defines a single contact cycle.

The non-linear finite element package ABAQUS (1989) was used
for the calculations. Table 3.2.3 shows the various computational
facilities and the required CPU times for each of the studies.

The finite element mesh used for rolling-plus-sliding with
heat generation is similar to the one used by Kulkarni et al.
(1990a) and is shown in Figure 3.2.2. It is a 2-dimensional mesh
consisting of 285 elements and 919 nodes. Eight noded
isoparametric plane strain elements are used. These elements are
biquadratic for displacements and linear for temperature
variation. The mesh extends for 24w in the circumferential (x)
direction and for 12w in the radial (y) direction. The mesh is
graded; very fine in the vicinity of the global origin and
coarser away from it. The thermo physical properties used in the
calculations are indicated in Table 3.2.4.

Boundary conditions 5 are applied to make the mesh simulate a
semi-infinite half plane and to model appropriate thermal
behavior. Side AB is the free surface; to simulate frictional
rolling contact, a thermo-mechanical load is repeatedly
translated across AB. The mechanical load is the combination of a
normal Hertzian pressure distribution, and a tangential surface
traction component. The tangential tractions are related to the
normal pressures through the friction coefficient. The thermal
loads are coupled to the mechanical loads (tangential tractions)
by the velocity term. Side AB loses heat by convection; the film
coefficient is indicated in Table 3.2.4.

The non-surface boundaries are displaced elastically to make

5 The derivation of the appropriate boundary conditions is
presented in Appendix 2.
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Table 3.2.3 Computational Requirements
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Case Computer CPU (hrs)

w

- 4

3-dimensional rolling

Steel

3-dimensional rolling

Aluminum

3-dimensional rolling+

sliding
Steel

Cray Y-MP 6 0.5

Cray X-MP 6 1.5

Vax 3500 workstation 7 84.0

=

E

?

w

6San Diego Supercomputer Center.

7The rolling sliding calculations are in

stage; they will be implemented on the Cray Y-MP.

the development

E

L
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Figure 3.2.2 Finite element mesh used for the 2-dimensional

calculations which accounted for rolling-plus-

sliding, with the resulting heat generation.
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Table 3.2.4 Thermo physical properties for 2-dimensiona_

calculations plus contact loadinq and qeometry

39

Parameter Value

t •

w

Young's Modulus

Poisson's Ratio

Kinematic Yield Strength

Hardening Modulus

Kinematic Shear Yield Strength

Peak Hertzian pressure

Half contact width

Mass density

Specific heat

Friction coefficient

Thermal expansion coefficient

Film coefficient

Thermal conductivity

207.0 GPa

0.3

1050.0 MPa

188.0 GPa

606.0 MPa

3. 031 GPa

0.5 x 10 -3 m

7850.0 kg/m 3

550.0 J/kg °C

0.2

1.2xlO -5 m/m °C

150.0 W/m 2 °C

60.0 W/m °C

u

Z

w
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the mesh behave as a semi-infinite half space. The non-uniform

mechanical loads, p and t, are discretized into several

concentratedforces, each acting on an infinitesimal area.

Elastic displacements due to each of these forces are

calculated at the non-surface boundary nodes using the equations

derived in Appendix i, and the principle of superposition is

applied. For the nodes along the bottom surface, DC, both X- and

Y-displacements are prescribed while for those on the sides AD

and BC, only displacements in the X-direction are calculated

using the elastic solution. The following assumptions have been

made: (I) temperature independent mechanical and thermo-physical

properties, (2) arbitrary heat transfer coefficient h, (3) no

heat generation due to inelastic straining, (4) the bearing

material is assumed to be a continuum (metallurgical

transformations accompanying the high temperatures are not

considered).

3.3 Three Dimensional Rolling Contact of Bearing Steel

Results are presented for the loaded state in the form of

iso-contours. Given the complicated three dimensional nature of

the problem, views along all three orthogonal axes are presented,

i.e. the top view (along the z-axis), the front view (along the-

y-axis), and the side view (along the x-axis). The residual

state values are presented for a set of elements located at the

center of the mesh as a function of the depth. The stress-plastic

strain histories in the half space are also introduced. The

stresses are normalized with respect to kk, the strains with

respect to kk/G and the depth with respect to w I.

As mentioned earlier, three different load levels were used

for the pure rolling analyses. The alternating or translating

component of the stresses acting upon the half-space, is shown in

the form of stress contours for the three pressure distributions

(high, medium and low) as well as for the three possible views

(top, front and side), for the case when the pressure is half way

through the second contact. The schematic drawings included with

the figures indicate the plane where the stresses are viewed.

All figures are shown for the second pass, however results for

the first pass were almost identical.

Figure 3.3.1 shows the distribution of equivalent Mises

stresses for high, medium and low pressure 8 viewed from the top

face of the model, i.e. along the z-axis. In this figure, as well

as all other figures representing the loaded model (i.e. all

8 For the top and side views the contour plots represent the

high, medium and low pressures, from top to bottom. For the front

view the high, medium and low pressure plots are arranged from

left to right respectively.
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figures except those representing residual values), the load is

at the center of the mesh, and the contours are directly under

the contact pressure. The elliptical nature of the contact is

evident from the shape of the contours (the size of the

contactwidths is indicated on the figure). A constant ratio of

semi-major to semi-minor contact width was used for all the

calculations 9. The equivalent stress is as high as 3.11 GPa at

the center of the contact for the high pressure case (2.33 GPa

and 1.33 GPa for the medium and low pressure cases,

respectively). Figure 3.3.2 shows the distribution of equivalent

Mises stresses for the side view, i.e. along the -x-axis, for the

three pressure levels. It is interesting_ to note in these

figures that the contours which indicate an equivalent stress

above the kinematic yield strength (a k = 1050.0 MPa) extend up to

the surface for the high pressure case (contours 4 and higher),

reach close to the surface for the medium pressure case

(contours 5 and higher), and are completely confined to the

subsurface region for the low pressure case (contours 6 and

higher). The same observations may be made with reference to the

contours shown in Figure 3.3.3. This figure shows the front view

of the equivalent Mises stress contours for a set of elements

located at the center of the mesh, as indicated in the schematic

drawing.

The translating 3-D Hertzian pressure produces highly

complex stress distributions in the half space. This is clearly

evident in Figures 3.3.4 through 3.3.8, which show stress

contours for the second contact. Figure 3.3.4 shows the contact

stress distribution (along the z direction) on the top surface.

The contours provide evidence of the elliptical nature of the

contact, elongated along the x-axis (perpendicular to the rolling

direction). Figure 3.3.5 depicts the distribution of shear

stress, axy , near the top surface, viewed along the z-axis. The
peak values for the antisymmetric distribution of this stress

component are present at the edge of the contact, and range from

plus to minus 166.0 MPa for the high pressure case, from plus to

minus 133.0 MPa for the medium pressure case, and from -88.8 MPa

to 77.7 MPa for the low pressure case. The most favorable

conditions for crack propagation driven by this stress component

would take place on a yz plane, i.e. perpendicular to the

surface, and close to the edge of the contact.

Figure 3.3.6 shows the distribution of circumferential

stress, avv , viewed along the -x direction. As previously

observed _ Kulkarni et al. (1990a) for the case of a contact

elongated along the rolling direction, a small region of tensile

stress develops at the surface on either side of the semi-minor

contact width. For the high pressure case, the magnitude of this

tensile stress component reaches up to 333.0 MPa. However, the

9 The ratio Wl/W 2 = 1.77.
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volume of material affected by the tensile stresses is not large.

Figure 3.3.7 shows the subsurface antisymmetric distribution of

shear stress, a_ This stress component peaks at a depth ofapproximately 0 . The magnltude of this stress is, however,

almost seven times as large as the previously mentioned values

for axy. The peak values for this stress range from plus to
minus II00.0 MPa for the high pressure case, from plus to minus

i000.0 MPa for the medium pressure case, and from plus to minus

555.0 MPa for the low pressure case. The most favorable

orientation for a crack to grow with this shear stress component

for driving force would be on planes parallel to the surface.

Figure 3.3.8 presents the contour distribution of axial

stress, axx , for a slice of material at the center of the mesh.
There is evidence of tensile axial stress at the edge of the

contact, however, with the exception of the high pressure case

where the stress approaches 444.0 MPa, it is negligible. In all

cases though, the volume of material affected by the tensile

stress is small. Figure 3.3.9 presents the distribution of shear

stress, axz , under the contact. The peak value of this shear

stress takes place at the edge of the contact, at a depth of

approximately 0.32w I. The magnitude of the shear stress is also

larger than _xy, but smaller than ay z. The peak values are i000.0
MPa for the nigh pressure case, 700_0 MPa for the medium pressure

case, and 433.0 MPa for the low pressure case. The distribution

is also expected to be antisymmetric but with respect to the

plane of symmetry of the mesh, i.e. y-z.

The plastic strain increments, dePij , for each translating

increment are used to calculate the equivalent plastic strain by

integrating them over the history of loading, based on avon

Mises yield function and for the appropriate kinematic hardening

flow rule. The equivalent plastic strain, ePeq , is thus a measure
of the degree of plasticity attained at a material point. Figure

3.3.10 shows the equivalent plastic strain contours half way

through the second translation of the pressure distribution,

viewed along the z-axis (top surface). Figure 3.3.11 shows the

equivalent plastic strain distribution from a side view. The peak

plastic activity takes place in all cases at a depth of

approximately 0.25w I. For the high pressure case, the peak

equivalent plastic strain reaches values as high as 0.004; for

the other two cases the maxima are equal to 0.00233 and 0.00044

for the medium and low pressures, respectively. Figure 3.3.12

shows the distribution of equivalent plastic strains viewed along

the y-axis, it is evident that as the pressure increases, so

does the volume of material affected by irreversible plasticity.

Another indication of the degree of plasticity is the

plastic work, given by the integral of the product aij.dePij
over the loading history of the material points Thls

irrecoverable work leads to damage accumulation by exhaustion of

ductility, which in turn is responsible for crack initiation and
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propagation, thus leading ultimately to failure. Figure 3.3.13

shows the contours of plastic energy viewed along the x-axis.

Figure 3.3.14 presents the subsurface distribution perpendicular

to the z-axis; this figure indicates that the maximum

dissipation of energy by irrecoverable plastic work takes place

at a depth of 0.3w I in all three cases. Moreover, the maximum of

plastic work occurs directly under the contact (centered with the

pressure distribution). However, the volume of material exposed

to cyclic plasticity increases with the peak pressure.

In the case of two dimensional rolling, line contact (a

rigid cylinder rolling over a flat half-space), the flat surface

remains flat during rolling and the mechanically admissible

residual stress state permits only two components, arxx and o r
which vary as a function of the distance from the surface_ _e

deformation mechanism is one of ratchetting parallel to the

surface. In the case of point contact, which is a three

dimensional problem, all six components of residual stress can

exist, and are present. Their magnitude is not only a function of

the depth from the surface (z distance) but also a function of

their distance from the center plane (x distance). The ploughing

of the material introduces a strain gradient in the axial

direction; this region is surrounded by material which has not

been plastically deformed. Upon unloading, this material tries to

recover its original shape, thus resulting in residual stresses.

Figures 3.3.15 through 3.3.17 show the distribution of

direct residual stresses at integration points located at a

distance of 0.125w I from the yz plane, at the center of the mesh.
The residual stresses are normalized with respect to the

kinematic shear yield strength, kk, and are plotted as a function

of the depth below the surface, normalized with respect to the

semi-major contact width, w I. Each plot presents the results for

the three contact pressures used in the calculations. Table 3.3.1

compares the peak direct residual stresses obtained for the

present calculations with previous values reported in the
literature.

Figures 3.3.18 through 3.3.21 show iso-contours of the half

equivalent plastic strain range for the three different loadings

(high: P0/k_9, medium: P0/k=6, low: P0/k=4) for pure rolling, and

for rolling-plus-sliding at the high load level (Fig. 3.3.21).
The contours are for a slice of material located at the center of

the mesh, as shown on the schematics. Figure 3.3.22 shows a

comparison of the variation in the half plastic strain range with

depth, for the three different loads under pure rolling, and the

high load under rolling plus sliding (these values are taken at

the same locations as Figs. 3.3.18-21).
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Table 3 3.1 Direct residual stresses
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Reference arxx aryy arz z

Groom (1983) -150

Bower and Cheesewright(1988) -150

Bhargava (1988), Po/kk=5 -7O

McDowell and Moyar(1986) NA

Kulkarni I0 (1990a), Po/kk=9.2 -115

Present Work:

Po/kk=8.93 -36
14

pure rolling Po/kk=6.59 -32
19

Po/kk=3.98 -16
7

roll. + slid. Po/kk=8.93 -45
ii0

-180 -30

-220 -60

-63 NA

-212 NA

-180 -40

Um

I

I

-59 -16
_=_

6 14 w

-56 -16 --

7 18
U

-32 -7

5 6

-121 -68

247 58

Note i:

Note 2:

The peak compressive and tensile residual stresses are

presented for the three different contact pressures

under pure rolling, and also for the rolling plus 0.2

percent sliding case.

All the stresses are expressed in MPa, and for the

present work, for the second pass of the load.

m

W

U

N

I0 The contact ellipsoid was elongated along the rolling

direction for this 3D calculation.

U

W

m
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Figure 3.3.18 Iso-contours of the half equivalent plastic strain

range for pure rolling with high loading (P0/k=9).
The contours are for a slice of material located
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3.4 Three Dimensional Rolling Contact of Hardened Aluminum

The Mises equivalent stress distribution for the Aluminum
properties is shown in Figure 3.4.111 • This figure shows the
equivalent stress contours on two different sections of the mesh
in the vicinity of the contact, as indicated in the schematic
drawings. The peak value of the equivalent stress occurs at a
depth of approximately 0.5w below the surface.

Figure 3.4.2 illustrates the equivalent plastic strain
contours underneath the contact. The equivalent plastic strain,
cPeq , is obtained by calculating the equivalent plastic strain
increment, dEPea, for each incremental pressure translation, and
integrating it _ over the entire loading history, it is a
cumulative measure of plasticity in the half space. Plastic
strain activity extends to a depth of approximately lw below the
surface and the peak plastic strain is located at a depth of
approximately 0.4w, as shown in Figure 3.4.2.

The distribution of the continuing cyclic plasticity during
the first and second contact sequences is shown in Figure 3.4.3.
This shows the variation with depth of equivalent plastic strain
range, _£P, which peaks at a relative depth of z/w = 0.45. The

magnitude of _P is non-zero up to a relative depth of z/w = 1.5

for the first contact. However, for the second contact (or

steady state), £P extends only to a relative depth of z/w = 1.0w.

The magnitude of peak EP remains essentially the same between

the first and the second contacts.

The residual stresses developed as a result of plastic

deformation of the rim at the end of the second contact are

illustrated in Figures 3.4.4 through 3.4.7. Contours of axial,

ax, and circumferential,3 [{[ residual stress contours are shown
in Figures 3.4.4 and .4 Residual stresses become tensile

very close to the surface, within a relative depth of z/w = 0.2.

Figures 3.4.6 and 3.4.7 illustrate the variation of _x and a
with relative depth. Peak residual stresses are compressive an_

are located at approximately z/w = 0.9.

The cyclic shear stress-shear strain history experienced by
the model for the two contacts is shown in Figure 3.4.8. The

point for which the stress-strain values are obtained is located

at a relative depth: z=0.4w. The non-fully reversed hysteresis

loop for the first contact is fully reversed for the second

contact. Thus the idealized ELKP material behavior allows no

ratchetting or unidirectional accumulation of plastic strains.

The permanent microstructural damage in 7075-T6 alloy is

Ii The distribution of individual

components are presented in Appendix 3.

stress and strain
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Figure 3.4.1. Contours of von Mises equivalent stress on two

different sections of the mesh (the sections are

schematically indicated by the side of each

figure). The numbers on the individual contours

represent different equivalent values of the
contours.
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levels 9 through Ii).
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caused by continuing plasticity in the rim. The damage is

characterized by the early formation of slip bands underneath

the contact, resulting in a gradual destruction of the grain

structure followed by sub-surface crack initiation. As

illustrated in Figures 3.4.9 and 3.4.10, the shape and the extent

of microstructural damage correlate very well with the equivalent

plastic strain distribution obtained from finite element

calculations.

Sub-surface cracks occur within the plastic zone at depths:

0.i _ z/w S 1.2 underneath the running track (here, the

normalizing parameter is the semi-minor axis of the contact

ellipse, w = 0.102 mm). The distribution of sub-surface cracks

as a function of depth is shown in Figure 3.4.11. The equivalent

plastic strain variation drawn to the same scale is also shown in

Figure 3.4.11. While the extent to which cracks occur below the

surface correlates well with the extent of continuing

plasticity, the majority of the cracks do not occur at z/w = 0.4

where the plastic strain peaks. Instead, a large number of

cracks are found closer to the surface at z/w = 0.20. The

distribution of crack length below the surface is shown in Figure

3.4.12. Again, the longest cracks are located at z/w = 0.20,

while the average length Of cracks at z/w = 0.40 is approximately

10x smaller. A plausible explanation of the high occurrence of

long cracks at z/w = 0.20 from the surface is that the

compressive residual stresses decrease in magnitude at this

depth. For instance, the circumferential and the out-of-plane

residual stress distributions, illustrated in Figure 3.4.12 shows

that high levels of compressive residual stresses at depths: 0.30

z/w _ 1.2 gradually diminish and become tensile at depths: z/w

0.2. Therefore, the process of crack initiation and growth

resulting from peak plastic activity is impeded by the presence

of high compressive residual stresses.

The following sequence of events occurs in 7075-T6 aluminum

before the final spall failure. Directly underneath the contact

at depths: z = 1.0w, slip lines gradually develop as a result of

continuing cyclic plasticity in the initial stages, i.e., N S 103

cycles. These slip lines probably represent plastic activity in

the primary slip systems. As the plastic damage continues, i.e.,

103 S N _ 106 , more slip systems are activated. Gradually the

slip bands become less discrete giving a destroyed appearance to

the grain structure. The only visible slip bands at this stage

are either very close to the surface: z/w _ 0.i, or at the outer

edges of the damaged region: z/w _ 1.2, where the plastic strain

tapers off. Small cracks nucleate within the damaged region:

0.i0 _ z/w _ 1.2. Smaller levels of compressive residual stress

favor both the initiation and the growth of cracks at z/w = 0.2.

As one of the crack branches reaches the surface, a chunk of

material breaks off, leaving behind a spall pit. As this

process continues, the spall pit grows larger and deeper into the

rim. These steps are schematically illustrated in Figure 3.4.13.

m
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The implication of these results is that compressiwe
residual stresses retard the process of sub-surface crack

nucleation and growth even in the presence of continuing

plasticity. Hence, longer lives can be obtained by artificially
installing residual compressive stresses in a relatively shallow

region under the surface, i.e., z/w S 0.25, or by altering the

properties of this shallow layer. The rolling cantact

performance is strongly determined by the cyclic stress-strain

response of the material, In spite of the microstruct%Lral

differences between bearing steels and 7075-T6 aluminum, the

cyclic stress-strain response of these two materials is

qualitatively similar. Therefore, the extension of the
relationship between residuil Stresses, cyclic plasticity and

sub-surface crack nucleation from 7075-T6 aluminum to bearing
steels is justifiable.

Some of the major limitations of the present work are

noteworthy. Cyclic axial tests do not reproduce the non-

proportional straining and rotation of principal shear directions
that result from repeated rolling contact above shakedown. When

the principal shear directions do not rotate, the cyclic damage

is limited to a fewer number of favorably oriented slip systems

and the damage is more intense. In addition, the absence of

hydrostatic stresses and the larger stressed volume shorten the

life in cyclic axial fatigue tests. This is a likely explanation

for the 103-fold difference between the rolling contact life and

the cyclic axial tests. Also, in 7075-T6 aluminum, the

precipitate particles are important contributors to strength 12.

However, the effect of particles is ignored in the current
study.

Future extension of the current study must treat (a) the

strain rate effects on cyclic stress-strain response, (b) non-

linearity of the kinematic hardening behavior, (c) the effect of

particles, (d) thermal effects, and (e) anisotropy and texture

effects. More work is needed to characterize the process of slip
band appearance at a sub-micros£ructural scale.

3.5 Two Dimensional Rolling-Plus-Sliding with Heat Generation

Figure 3.5.1 shows the normalized residual stresses as a

function of normalized depth, y/w (after unloading followed by

cooling to the ambient temperature). Both the axial (az) and
the circumferential (Cx) stresses are found to be tensile up to

a depth of approximately 0.5 y/w. Figures 3.5.2 and 3.5.3
compare the circumferential and axial residual stresses

12 Indeed, during the axial fatigue tests, a noticeable

difference between the elastic slope in tension and compression

was observed. This is probably an effect induced by the
precipitate particles.
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respectively for the thermo-mechanical and mechanical loading

cases. Significant differences in magnitude and nature are

observed. Fig. 3.5.4 presents theresidual equivalent plastic

strain contours for a section of the mesh, and Fig. 3.5.5 shows

the residual equivalent plastic strain variation with depth.

Peak plastic activity occurs slightly beiow £he surface. Figure

3.5.6 shows a section of the residual state of the mesh (after

cooling to the ambient temperature). The surface temperatures

half way through the passes are shown in Fig. 3.5.7. The

temperature distribution is asymmetric about x/w = 0.0. Fig.

3.5.8 shows the temperature contours half way through the third

pass. Figures 3.5.9 and 3.5.10 present the hysteresis loops for

the second and third passes, respectively. The loop is found to

be closed after the third pass (second thermo mechanical pass)

indicating fully reversed plasticity.

The analyses reveal that the incorporation of ELKP material :

properties greatly reduces the plastic strains generated compared o_i

with those resulting from perfect plasticity. The p@ak residual

equivalent plastic strain (CD) obtained here, 2.5xi0 -3 (Po/k=5.0,

_=0.i), is equal to 1/25 oT the value obtained by Kulkarni et

al. (1989): 6.0x10 -z (Po/k=5.0, _=0.i), for elastic perfectly

plastic behavior under the same operating conditions. From Fig.

3.5.5 it can be seen that heating does not have a large effect on

the residual strains, but the peak strain occurs at a lesser

depth. Further, it should be noted that no plastic strains

extend beyond a depth of 2w (see Figs. 3.5.4 and 3.5.5).

A similar trend is seen for the residual stresses. The

normalized stresses are found to be tensile, consistent with the

findings of Kulkarni et al. (finite element model, 1988), and

Muro et al. (X-ray measurements, 1973), But the magnitudes are

far smaller than those obtained by Kulkarni et al. who reported a

peak normalized circumferential residual stress of 1.7, clearly
due to the difference in material properties. The residual

stresses are found to be highly tensile and less compressive as

compared to the non-heating case. The ratio of peak tensile

stress to peak compressive stress is close to 2.5 for circum-

ferential residual stresses, and 2.0 for axial residual stresses.

A value of 2.0 has been reported by Muro et al. (1973),

determined by X-ray measurements (see Figs. 3.5.1 and 3.5.2).

The peak circumferential residual stresses are found to be about

1.4 times the peak axial residual stresses (Fig. 3.5.3). It

should be noted that the residual stresses vanish at a depth of

2w as do the residual strains. The highest temperature after

three passes is found to be 590 C. The temperature increment per

pass decreases with each pass but the thermal steady state is not

reached (Fig. 3.5.7). The temperature contours half way through

the third pass show high temperatures away from the position of

the load in the direction opposite to the translation of the

load. Temperature gradients are seen to vanish after a depth of

0.5w. This steep temperature gradient produces very high
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compressive stresses. This is followed by a nonuniform thermal

contraction during cooling which appears to be the reason for the

residual tensile stresses. These transient residual tensions

(due to the translating thermo-mechanical load) suggest a

possible mechanism for thermo-cracking. The hysteresis loops show

that plasticity is fully reversed after two passes as reported

by Ham et al. (1989).

Temperature dependence of thermo-physical properties is

complicated and difficult to implement. Of the thermal

properties, r, the thermal diffusivity, usually co-varies with

the thermal conductivity, K, at intermediate and high tempera-

tures. As a rule p decreases and c D increases with increasing

temperatures, while k increases or aecreases with temperature,

depending on the material. The most important thermal parameter

is h(T) , the coefficient for forced convection (film

coefficient). In forced convection h(T) varies from I0 to 104

W/m 2 K, and depends on geometry, flow conditions and physical

properties. An attempt at a boundary layer analysis to solve the

heat transfer problem and define h(T) for a specific contact

situation is recommended. Of the mechanical properties, E,

Young's modulus, decreases, while v, Poisson's ratio, increases

with increase in temperature.

Accounting for the changes in mechanical properties with

temperature is recommended for further study; the material will

soften at high temperatures and this could significantly alter

the residual stresses and strains.

3.6 Conclusions

Three dimensional finite element calculations of repeated

frictionless rolling contact have been carried out for ELKP

properties of an AISI 440C bearing steel, at relative Hertzian

pressures of Po/kk _ 4.0, 6.6 and 8.9, using the geometry of the

3-ball-rod contact fatigue testing machine. The subsurface

stresses, plastic strains, residual stresses and plastic work

done are evaluated. Equivalent stresses above the kinematic yield

strength extend to the surface only for the highest load level.

The peak equivalent plastic strain occurs at approximately 0.25w 1

(Wl/W 2 = 1.77) for all load cases; the values of these strains
are 4 4x10 -4 2 33xi0 -3, and 4 0xl0 -3, for the low, medium and

high loads, respectively.

Three dimensional finite element calculations of repeated

frictionless rolling contact have been carried out for ELKP

properties of the 7075-T6 aluminum alloy, at a relative Hertzian

pressure of Po/kk _ 5.7, using the geometry of the 3-ball-rod

contact fatigue testing machine. The subsurface stresses, plastic

strains, and residual stresses are evaluated. The peak plastic

strain amplitude, _£Pmax/2 = 1.6x10 -3, occurs at a relative depth

of z/w = 0.4 below the surface. Peak residual stresses obtained

D
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are arx(max) = 26.4 MPa, and ary(max) = 39.7 MPa, occuring at a
relative depth of z/w = 0.9.

; _ } ;=7 = ; : --- _ . _ :i

Two dimensional finite element calculations of repeated

rolling-plus-sliding contact have been carried out for ELKP

properties of an AISI 440C bearing steel, at relative Hertzian

pressures of Po/kk = 5.0. Plastic strains, residual stresses and

temperature distributions are presented. Plastic strains are

shown to be considerably lower for ELKP properties than for an

elastic-perfectly-plastic material (Kulkarni et al., 1989).

Steep temperature gradients close to the surface produce high

compressive stresses; the ensuing cooling causes residual tensile

stresses, a possible mechanism for thermo-cracking. Thermo-

mechanical behavior is highly dependent on the material

properties, which also may be temperature dependent. A more

precise definition of these properties, especially the thermal

film coefficient, is recommended.
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• EVALUATION OF THE FRACTURE MECHANICS DRIVING FORCE FOR SPALL

GROWTH

4.1 Background

This section reviews and extends calculations of the frac-

ture mechanics driving force for cyclic crack growth under

rolling contact (see Keer and Bryant, 1983, O'Reagan et al.,

1985, Bastias et al., 1989, and Hanson and Keer, 1991, for

reviews of the problem). Observations of the spall process in

440C samples, described in Section 5.4, as well as observations

of spall damaged HPOTP bearings (Bhat and Dolan, 1982, 1983),

indicate that the spalls nucleate close to the surface. The

number of cycles needed by surface-breaking, micron-size crack

nuclei to grow to a spall is one component of the contact life.

The analysis of the growth component is a difficult task,

particularly for the conditions in the HPOTP bearing. First,

there are several features that can add to the K - crack

growth driving force produced the Hertzian stresses. These

include stationary pressure spikes arising from surface irregula-

rities, the pressure of lubricant in the crack cavity, centri-

fugal and tensile residual stresses superimposed on the Hertzian

stresses and thermal stresses. The contributions from these

sources are not necessarily in phase. Secondly, there are Mode

I, II and iII contributions to the driving force whose combined

effect is difficult to predict. Thirdly, the driving force is

modified by the crack face friction and the non-planar crack

profile, features that are difficult to quantify. Fourth, only a

few studies have examined the actual 3-dimensional crack con-

figuration (Kaneta and Murakami, 1991, Hanson and Keer, 1991).

Finally, analyses of the driving force are difficult to test

because the centrifugal stresses, lubrication and thermal condi-

tions in the HPOTP bearing are not reproduced in the 3-ball-rod

testing machine.

The sources of driving force are examined more fully in

Section 4.2. A new analysis by Bower (1989) for a 2 dimensional

surface breaking C rac_ _i£h entrapped iubricant is applied in
Section 4.3 to define the fracture mechanics driving force for

conditions of interest. Results of driving force calculations

for the different s0urces are Compared in Section 4.4. The

corresponding threshold crack sizes for growth are examined in

Section 4.5. Actual measurements of the growth life are

presented in Section 5.4. Fracture mechanics predictions of

crack growth are compared with the measurements in Section 6.3.

4.2 Contributions to the Spall Growth Driving Force.

4.2.1 Hertzian Stresses. Under pure rolling contact, the

Hertzian stresses -- those associated with perfectly smooth,

J
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idealized contacting surfaces -- are largely compressive and, by

themselves, fail to generate a Mode I crack driving force 13. Low

levels of tensile stress are generated close to the surface for

the case of rolling-plus-sliding with friction but these are not

likely to produce significant Mode I K-values for small, as-

nucleated cracks. Two-dimensional treatments of sub-surface

cracks (O'Reagan et al., 1985) show that the cyclic shear

stresses generated under rolling contact do produce Mode II and

Mode III K-values. The peak values occur well below the surface

at relative depths y = w (where 2w is the contact width) provided

crack face friction is ignored. However, even the peak values

are modest because the friction and interlocking between the

rough crack faces impede the crack face sliding. For lubricated

contact, the Mode II and Mode III K-values diminish as the

surface is approached. This is also true for surface-breakinq

cracks. Keer and Bryant (1983) find that the K-values of 2-

dimensional surface-breaking cracks are very small for crack

lengths just beyond the nucleation stage, i.e. a = i0 _m. In

general, the driving forces produced by 3-dimensional cracks are

even smaller (Kaneta and Murakami, 1990). The conclusion to be

drawn from this is that the mechanical effects of pure rolling

contact of idealized smooth surfaces do not promote the growth of
micron-size surface or near-surface cracks. Other contributions

to the K-driving force must be considered to account for the

formation of spalls.

4.2.2 Stationary Pressure Spikes from Surface _rreqularities.

The analyses of Goglia et al., 1984, de Mul et al., 1987, and

Elsharkawy and Hamrock, 1991 reveal that small, sub-microns-size

irregulaities in the running track surface, i.e., asperities,

dents and grooves, produce large, local perturbations of the

Hertzian pressure. These are in the form of narrow, stationary

pressure spikes that rise and fall as the contact passes over the

asperity. The spikes can be expected to assist the nucleation of

near-surface cracks and then intensify the KII- and KII I-

values generated, thereby facilitating their growth until they

attain a size comparable to the dimensions of the surface

irregularity. Evidence of this is contained in early work

showing direct relations between surface roughness and contact

life (Soda and Yamamoto, 1982), the deleterious effects of debris

dents (Lorosch, 1982) and the measurements reported in Sections

5.4 and 5.5. No work has yet been done to analyze the contribu-

tions of stationary spikes to the crack growth driving force.

4.2.3 Entrapped Lubricant. Experiments by Way (1935),

Dawson (1961), and Clayton and Hill (1986) show that spalls do

13 The Modes I, II and III correspond with the opening mode,

in-plane mode and out-of-plane mode of crack loading, respective-

ly.
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not form in the absence of a lubricating fluid. The cracks

always propagate in the direction of the load or, stated in

another way, cracks only form with negative inclinations

(Nakajima et al., 1983, Fujita, 1984). Also, when one rolling

element drives another, the driven element fails first (Soda and

Yamamoto (1982), Nakajima (1983)). Hanson and Keer (1991) have

rationalized these observations, noting that under the above

conditions, the mouth of a surface-breaking crack is open and can

accept lubricant before closing under the action of the contact

pressure. The effects of lubricant were treated by Keer and

Bryant (1983), Kaneta et al. (1985,1987) who assumed that the

entrapped lubricant transmits the pressure from the mouth of the

crack to the crack tip. This mechanism produces both Mode I and

Mode II crack driving forces. Recently, Bower (1988) has

employed the distribute dislocation technique of Keer and Bryant

(1983) to calculate the stress intensity factors for 2 dimen-

sional surface breaking cracks. Bower proposes that the crack

mouth closes as the contact moves over the crack, pushing en-

trapped liquid into the crack and forcing the crack faces apart,

producing a significant Mode I crack driving force. This mecha-

nism is sensitive to the direction of rolling. The implications

of the Bower analysis for short, surface breaking cracks are exa-

mined in Section 4.4. A more recent treatment of 3-dimensional

cracks with entrapped lubricant has been reported by Kaneta and

Murakami, 1991.

4.2.4 Thermal stresses. The localized frictional heating

attending rolling-plus-sliding can enhance crack growth

directly by way of the cyclic thermal stresses and indirectly

through thermal stress-induced-plasticity and the resulting

tensile residual stresses. In addition, the attending reductions

in clearances can increase the contact pressure and the heat

generation. The latter is part of the scenario proposed by Bhat

and Dolan (1982,1983) for failures of the HPOTP bearing. Goshima

and Keer (1990) have analyzed the contribution of thermoelastic

contact on the crack driving force. The influence of thermal-

mechanical contact on plasticity-induced residual stresses is

examined in Section 3.5.

4.2.5 Centrifuqal and Residual Stresses. Centrifugal and

residual stresses are ordinarily not cyclic in nature. However,

when the compressive Hertzian contact stresses are superimposed

on centrifugal (tensile) stresses or circumferential tensile
residual stresses, Mode I K-driving forces are obtained

(Mendelson and Ghosn, 1986). In addition, the centrifugal and

tensile residual stresses reduce the stress normal to the crack

faces, and, by way of the crack face friction, increase the Mode

II- and Mode III- components of the driving force (Chen et al.,

1988). Consistent with this, evidence of improvements in the

contact life produced by compressive residual stresses has been

reported by a number of workers (Fujita and Yoshida, 1978,

Clark, 1985, Xiao et al., 1990). Elasto-plastic calculations of
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rolling contact indicate that significant, circumferential, ten-

sile residual stresses are generated when the rolling element is

overloaded or subjected to sliding and overheated, at contact

pressures well above shakedown (Bhargava et al., 1990, Kulkarni,

1991). Mendelson and Ghosn (1986) have used a boundary integral

method to calculate the stress intensity factors for a surface

breaking, vertical crack. Their analysis accounts for the

centrifugal stress but assumes the crack faces to be frictionless

and does not take the effects of entrapped lubricant into

account.

4.2.6 Cyclic Plasticity. Cyclic plasticity increases the

crack tip displacements which are responsible for the cyclic

crack growth. This effect appears to be small for hardened

bearing steel because the plastic hardening rate is close to the

elastic stiffness (Bastias, 1990). However, the contribution of

plasticity could be important at elevated temperatures and in

regions of the bearing softened by overheating.

4.3 Evaluation of The Mode I and Mode II Driving Force for

Surface-Breaking Cracks with Entrapped Liquid.

4.3.1 Analytical Procedure. As noted in Section 4.2.3.,

Bower (1989) has used the distributed dislocation technique to

evaluate the Mode I and Mode II crack driving force for 2 dimen-

sional, surface-breaking cracks with entrapped liquid. This

section offers additional calculations of the driving forces for

cracks with the usual inclinations. The calculations employed

the techniques devised by Bower and were facilitated by software

made available by him. The theoretical model, which is

illustrated in Figure 4.1, consists of a 2-dimensional surface

breaking crack of length, a, in a half space. The definition of

the crack inclination e is that employed by Bhargava et al.

(1990). The Hertzian pressure distribution, and the associated

frictional shear tractions, are applied on the surface of the

half space, and incrementally translated from left to right.

They are characterized by the peak Hertzian pressure, P0, and the

maximum tangential traction, q0- Two different tractive forces

were examined: (a) the negative or "driving" traction

experienced by the slower rotating, !'driven"element or follower

which is directed opposite to the rolling direction and (b) the

positive or "braking" traction experienced by the faster rotating

driver which is directed in the rolling direction. The

calculations were performed for: (i) dry conditions, (ii)

lubricated conditions with Hertzian pressure over the crack mouth

acting in the crack cavity, (iii) q0/P0 = -0.01,-0.05,-

0.10,0.01,0.05 and 0.i0 (iv) crack face friction values of _c = 0

and 0.2, (v) crack inclinations of e = -20 ° and -30 ° and (vi)

relative crack depths 0.2 < x/h < 1.0. While the main objective

of this work was to extend the driving force calculations to the

threshold crack size, the Bowers algorithms proved to be unstable

for crack depths shallower than a/w = 0.5. It should be noted
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breaking crack problem which was solved using the

Bowers (1989)_ analytical solution. The load was
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with the rolling direction.
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that negative tractions are expected to increase the crack mouth

opening and permit more fluid to enter the crack cavity before it

is closed by the contact pressure than is the case for positive

tractions. However, the Bower model does not account for differ-

ences in the crack mouth opening arising from the sign and

magnitude of the tractions.

m

I

qm

4.3.2. Results. Results for dry contact are summarized in

Figures 4.2 - 4.12. In these cases a Mode I component is not

produced because there is no liquid to be trapped in the crack

cavity. The calculations show that the potency of the surface-

breaking crack, given by the normalized driving force range,

_KiI/(PoJa), decreases as the crack becomes shorter and shallow-

er. For an a=10 _m-long, _c=0.2, 8 c = -20°-inclined crack in a

driven element, subjected to a Hertzian pressure, Po=2.5 GPa, a
traction ratio, qo/Po=-0.05: _KI=0, and _Kii/(PoJa)~0.1 (for the

extrapolation shown in Figure 4.11 with dashed lines. This

means that _KII _ 0.7, which is likely to be well below the
threshold.

The results for lubricated contact and cracks with entrapped

liquid are summarized in Figures 4.13 - 4.31. These show that

the potency of the cracks increases as the crack becomes shorter

and shallower for the a/w-range examined. The normalized driving

force must reach a maximum with a/w and then approach zero for

vanishingly small a/w, but the position of the maximum could not

be defined (see Figure 4.29). While the _Kii-driving force for

the same a = I0 _m-long crack and contact pressure cited in the

previous paragraph is much larger with lubricant pressure, the

uncertainties in the interpolation (see Figure 4.29) prevent a
numerical evaluation. The Mode I values for the lubricated case

are about 3x larger than the Mode II values and could well be

above the threshold. The Mode II driving force values are about

25% greater with positive tractions than with negative tractions

in the lubricated case, a difference that is not observed in the

absence of lubrication. The Mode I - _K-values, presented in

Figure 4.21, are independent of the sign of the traction and the
values of the crack face friction.

4.4 Comparisons of the Contributions to the Driving Force for

Surface Breaking Cracks.

To facilitate a comparison of the crack growth driving

force arising from centrifugal stresses, entrapped liquid and

thermal effects, the results of the different 2- and 3-dimensio-

nal analyses were reduced to the relations between the normalized

driving force and the normalized crack length and compiled in

...... Tabie--4_iand -_in-FTgure 4.32, M0stofthe analyses have been

performed for crack lengths, a, comparable to the semi-contact

width, w, i.e. a/w = 1.0, rather than the threshold crack length,

e.g. 0.001 < a/w < 0.01. In some cases, such as small subsurface
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Table 4.1 SUMMARY OF FRACTURE MECHANICS K DRIVING FORCE

CALCULATIONS FOR SURFACE BREAKING CRACKS SUBJECTED TO

_ROLLING CONTACT

Contact a --qo-- _c a 8 Mode _K Ref.

Conditions w Po b PoJW

L_

2D, Dry

2D, Dry

2D, Dry

2D, Lubrlc.

2D, Lubric.

2D, Lubrlc.

2D, Lubric.

2D, Lubrlc.

2D, Lubrlc.

2D, Lubrlc.

2D, Lubrlc.

0.5 -0.01 0.2

1.0 -0.01 0.2

1.5 -0.01 0.2

0.5 -0.01 0.2

1.0 -0.01 0.2

1.5 -0.01 0.2

0.5 -0.01 -

1.0 -0.01 -

1.5 -0.01 -

0.5 -0.05 0.25

0.5 -0.05 0.25

2D,Dry,Cent. 1.0

2D,Dry,Cent. 2.0

2D,Dry,Cent. 1.0

2D,Dry,Cent. 2.0

2D,Dry,TC

2D,Dry,TC

2D,Dry,TC

3D,Lubric.

3D,Lubrlc.

3D,Lubric.

3D,Lubric

3D,Lubric

3D,Lubric

3D,Lubric

0 0

0 0

0 0

0 0

0.05 0.i 0

0.i0 0.i 0

0.20 0.i 0

0.2 0 0.5

0.i 0 0.5

0.2 -0.i 0.5

1.0 -0.i

0.I -0.i

0.5 -0.1

1.0 -0.i

20[ II 0.18 [I]

20 II 0.33 [I]
e

20° II 0.44 [i]

20° II 0.54 [i]
20 II 0.49 [i]

°

20° II 0.57 [I]
20 I 1.36 [i]

20° I i. 36 [I]

20° I 1.30 [I]

25° II 0.68 [2]

25 I 1.44 [2]
o

900 II 0.97 [3]

90 II 1.13 [3]
o

90 I 0.09 [3]
e

90 I 0.27 [3]
o

30° II 0.078 [4]

30° II 0.131 [4]
30 II 0.209 [4]

e

0.5 45 II 0.035 [5]
o

2.0 45 II 0.053 [5]
o

0.5 45° I 0.15 [5]

0.5 45° i 0.25 [5]
2.0 45 I 0.12 [5]

o

2.0 45 I 0.20 [5]
0

2.0 45 I 0.20 [5]

L ....

w

L--==
w

.==

w

Ref.:

Note i:

Note 2:

Key

[i] This Report

[2] Bower, A.F. (1989)

[3] Mendelson, A., and Ghosh, L.J. (1986)

[4] Goshima, T., and Keer, L.M. (1990)

[5] Kaneta, M , and Murakami, Y. (1990)

The values indicated under Ref. [3] were obtained for:

Roller Diam: 0.5 in Roller Length: 0.57322 in

No. Rollers: 28 Shaft Speed: 25,500 RPM

Shaft - IR: 2.0 in , OR: 2.30233 in

Inner Raceway - IR: 2.3 in , OR: 2.6 in

Outer Raceway - IR: 3 1 in , OR: 3.35 in

Interference fit of inner raceway

onto the shaft at 0 RPM : 0.00233 in

The values for Ref. [4] are for: thermal loading

parameter ([) = i0, and for a Peclet number (Pe) = I00.

TC - Thermal Contact

Cent - Centrifugal Forces

Dry - No Lubricant in Crack
Lubric - Pressure in Crack

due to lubric.
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cracks, the relation between the normalized driving force and
crack length is parabolic 14 (O'Reagan et al., 1985) and this
facilitates interpolations. However, this is not the case for
the surface breaking cracks examined here and any interpolations
to small crack lengths must be done with caution even though the
driving force for vanishingly small cracks does approach zero.

The results in Figure 4.32 reveal that pressure from fluid
in the crack cavity, centrifugal stresses and thermal stresses
each add significantly to the _K-driving force, particularly for
relatively short cracks, a/w < 0.i. However, they are not
necessarily additive because they do not peak at the Same
relative contact location. Fluid in the crack cavity is
especially potent since it generates Mode I values that are even
larger than the Mode II values. The compilation suggests that
all but the smallest, surface breaking, lubricated cracks may
grow in Mode I. It is also evident that the driving forces
generated by 3 dimensional cracks are =20% of the values obtained
for 2-dimensional cracks. Since the real spall nuclei are 3-di-
mensional (see Section 5.4), the 3-D results of Kaneta and
Murakami (1990) appear to be most relevant for estimating growth
on the 3-ball-rod testing machine. The following expressions
approximate the variation of the driving force with crack length
for this case:

AK I = A (a/w) B P0 Jw .............. (4.1)

where A =2.3 and B = 0.3.

4.5 Evaluation of Threshold Crack Sizes.

Insight into the significance of the driving force values

can be obtained by installing a separate set of curves describing

the conditions at the threshold for growth. By inserting speci-

fic values of the peak contact pressure, P0, and the threshold

value of _K, curves describing the driving force requirements

for different threshold flaw sizes can be generated. These

curves are overlayed in Figures 4.33-4.34 on the results of the

driving force analyses in Figure 4.32 for 2 contact pressures and

2 estimates of the threshold, _Ktbr_shold" The coincidence of
the results from a particular urlvlng force source and the

threshold curves define the critical crack size for growth in

each case. Cracks smaller than the threshold would either not be

expected to grow, or to enlarge much more slowly as part of the

crack nucleation process. Since crack nucleation is assisted by

hard particles and inclusions, the critical flaw size can be

viewed as a rough measure of the tolerable inclusion size.

14 _K/P0/a = A or _d</(P0/W ) = A /(a/w) where A is a constant.

W

J

n

m

mm

I

u

J

E,_

g

n

g

m

I

U



w

134

===

1.6'

1.2"

O

h£
o.8-

0.4-

0-

o

[]

[]
[]

[]

0.6

AK,,/poCJ '= vs (a/u)

[]
[]

@

[]
[]

¢

8 []
[]

1 1.8 2.8
(a/_)

1
Legend

5_ K,.2D.L

K..2D.D

K,,.2D.L

• K,,,2D,L

:_] K,.2D,L

K,,.2D.D.C

K,.2D,D,L

-7 K,,,2D.D.TC

• K,,,3D.L

K,.3D.L

Figure 4.32 Normalized, Mode I and Mode II stress intensity

factor ranges reported by different investigators

for different sources of the cyclic crack growth

driving force and for different relative crack

lengths. Details can be found in Table 4.l.The

following abbreviations are used: 2D - 2-

dimensional, 3D - 3-dimensional, D - dry, L-

lubricated, C - centrifugal stress and T - thermal

stress.



135 m

AK,,/po ''= vs

[]
[]

Po=2400 MPa AKTH----_2MPa.m V2

Po=3600 MPa'_KTH=3 MPa.m v2

[]

[]

@

(e/_)

[]

Legend

KI.2D.L

K,,.2D.D

K..2D.L

• K..2D.L

K,.2D,L

K..2D.D.C

Kj.2D,D.L

-7 K..2D.D.TC

K.,3D.L

K,.3D.L

[]

m

'BIB

J

m

m

IIIBB

m

m
W

M

IB

lib

Figure 4.33 Curves describing the conditions at the threshold

for cyclic crack growth for either a Hertzian

contact pressure, Po = 2.4 GPa and a _KTHRESH = 2
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surfaces, a Hertzian pressure of Po = 2.4 GPa and a K_-threshold
= 5 MPa, 3-dimensional, surface breaking cracks (and Inclusions)
with dimensions, a = i0 _m can be tolerated in a perfectly smooth
well lubricated bearing. The centrifugal stress contribution
appears to be negligible. The defect tolerance will be reduced
somewhat by thermal stresses arising from loss of lubrication and
sliding. The a = i0 _m defect dimension is larger than the
inclusions normally encountered in bearing grade 440C. Consis-
tent With this, the contact lives of 440C samples which contain
=i0 _m- surface breaking cracks exceed N = 6.10 s contacts when
they are tested at Po = 2.4 GPa in the 3-ball-rod tester. The
cracks do not grow under these conditions. At higher contact
pressures the same a = i0 _m surface cracks do grow into spalls
and reduce the contact life dramatically (see Section 5.4).

4.6 Conclusions

Efforts have been made to extend the Bower treatment of 2-
dimensional, surface breaking cracks with fluid in the crack
cavity to smaller relative crack lengths, but the Bower algorithm
proved unstable for a/w < 0.5. In the range 0.5 < a/w < 1.5, the
values of the normalized driving force, K/P0Ja decrease with the
relative crack length, a/w, for lubricated contact, but increase
for dry contact

A compilation of K-driving force values of surface
breaking cracks has been assembled. This reveals that fluid in
the crack cavity, centrifugal stresses, and thermal stresses add
significantly to the crack driving force, particularly for
relatively short cracks, a/w < 0.I. Fluid in the crack cavity is
especially potent, producing relatively large Mode I driving
force values. The driving forces generated by 3-dimensional
cracks are = 20% of the values calculated for 2-dimensional
cracks.

As a result of the modest driving force generated by small,
3-dimensional cracks, surface cracks as large as a = i0 _m would
not be expected to grow in idealized smooth, well lubricated
bearings with a Mode I, KTHR_SH = 5 MPa subjected to a Hertzian
Pressure, Po = 2.4 GPa. Thls is consistent with experimental
results described in Section 5.4.
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5. ROLLING CONTACT FAILURE

5.1 Background

The life of an element subjected to rolling contact loading

is limited by the premature spalling and heavy wear of the

bearing races and balls. The spalls are mainly surface

initiated, proceeding in both balls and races, and propagate

inward with distinctive geometric features.

The spalling process is driven by the surface frictional

tractions, Soda (1981), and by the stationary pressure spikes

originated at surface irregularities, Hamrock (1990). Additional

complications may be caused by: a) the presence of subsurface

secondary particles or inclusions, which may lead to subsurface

initiated cracks, b) strain induced phase transformations, i.e.

retained austenite decomposition, carbide dissolution, c)

lubrication conditions at the surface, or d) thermally induced

stress fluctuations (as treated in Section 3.5), which eventually

contribute to the Modes I and II driving forces (as indicated in

Section 4.4).

This section describes experiments conducted on 440C bearing

steel in order to gain a better understanding of the mechanisms

leading to spall failure under different conditions.

5.2 Experimental Materials and Procedures

The rolling experiments were carried out on the 3-ball-rod

rolling contact fatigue tester developed by the ball and roller

bearing group at Federal-Mogul, and furnished by NTN Bower. The

design and operation of the tester machine has been described by

Glover (1982).

The test material is AISI 440C, martensitic stainless steel,

heat treated to a hardness of 59-61 HRc. The test samples were

subjected to the following heat treatment:

a) Austenitized at 1930±30 _F for 1 hour at temperature.

b) Hardened by quenching in liquid nitrogen.

c) Tempered one hour (minimum) at 325±25 gF.

d) Cooled in air to 70±10 QF.

e) Cold soaked in liquid nitrogen for 30 minutes.

f) Tempered for 1 hour at 325±25 gF.

The geometry of the samples is shown in Figure 5.1. The test
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samples were ground to a surface finish of 6.5 AA (0.165 _m),

with a roundness of 1.27-1.54 _m (a more detailed study of the

surface finish is included in Figure 5.2). Each rod can be used

to perform up to 8 individual tests.

The balls used in the RCF tester are made of AISI 52100

bearing grade steel. Two differen_t sets of balls were used during

the tests. The first set consisted of balls with smooth surface,

i.e. 0.34 AA (8.6xi0 -3 _m), and the second set consisted of balls

which are abrasive blasted to increase the surface roughness,

i.e. 4.28 AA (0.ii _m). A more detailed surface analysis of both

types of balls can be seen in Figures 5.3a and b. The chemical

compositions for both the 440C and the 52100 steels are shown in

Table 5.1.

5.2.1 Rollinq Contact Testinq: A total of 21 individual tests

(see Table 5.2), distributed among three specimens were
conducted. After each test the balls were replaced to insure

uniform testing conditions. Exxon grade 2380 turbine oil was used

as a lubricant in all the tests. The oil was applied by drip feed

at a rate of i0 drops per minute. A spring load of 253.6 N was

used in all the tests. The peak Hertzian pressure was calculated

to be equal to 5.4 GPa.

Six tests were conducted under similar conditions to

determine the amount of scatter in the results (Test Series I).

An attempt was also made to vary the content of retained

austenite in the specimens by soaking in liquid nitrogen for

different lengths of time; a total of i0 tests were devoted to

this purpose (Test Series 2). Three more tests were conducted

with smooth balls in order to register any differences in the

failure life, location and size of spalls, or the surface

appearance after the test (Test Series 3). Two additional tests

were conducted using rough balls in order to study the contacting

surface (Test Series 4). The tests were interrupted after a short

time after starting to examine and photograph the surface under

the scanning electron microscope. After examination, the

specimens were inserted back into the RCF tester. The tests were

continued until spalling failure occurred.

The fatigue test results summarized in Table 5.2 have been

analyzed using the two-parameter Weibull statistics. The Weibull

estimates for the two cases are summarized in Tables 5.3 and 5.4,

respectively. Graphical representation of the test data is

illustrated in Figure 5.4. The procedure adopted to obtain the

Weibull parameters is similar to the graphical method described

by Lipson and Sheth (1973). A computer program was written to

evaluate the LI0 and L50, as well as the characteristic lives,

and the upper and lower bounds for the 75% confidence levels, by

using a binomial distribution method.

h
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Table 5.1 Composition of 440C and 52100
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I

Steel C Mn Si Cr Ni Mo Cu A1 P S
i

440C 1.05 .44 .44

52100 1.02 .34 .32

17.11 .i0 .48 .04 .02 <.022 <.001

1.45 0.13 .05 .16 --- <.09 <.014
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A_ORIGINAL P_E IS

OF POOR QUALITY

Surface roughness of 440-C RCF test sample. (a)

Shows the profilometer trace, with a peak-to-

valley value of 56.75 #in, (b) shows an analysis
of the profile, worth noticing the surface finish

of 6.5 _in, and (c) the roundness analysis

indicates a good value, i.e. 50-60 #in.
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Figure 5.3.a Surface roughness analysis of a 52100 RCF ball.

The ball has been grit (sand) blasted to a surface

finish of 4.18 _in, for a peak-to-valley of 97.63

_in.
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Surface roughness analysis of a 52100 RCF ball.

The ball has been lapped to a surface finish of

0.34 #in, for a peak-to-valley of 6.34 #in.
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Table 5.2 Result of Rollinq Tests

Test Series i: Study of the contacting surfaces and scatter in

the experimental data (combined with Test Series 3

for the statistical analysis shown in Table 5.3)

Test Specimen Track Machine Hours Ball Hours to Stress

# ID # Head in LN 2 Lot 15 Failure Cyclesxl06

1 A1 L1 1 0 R 22.0 11.33

2 A2 L1 1 0 R 10.4 5.36

3 A2 L3 1 0 R 6.4 3.30

4 A2 L5 1 0 R 2.4 1.24

5 A2 L7 1 0 R 2.4 1.24

6 A2 L9 1 0 R 10.4 5.36

Test Series 2: Retained austenite study.

7 A1 L3 1 1 R 27.8 14.32

8 A1 L5 1 2 R 7.5 3.86

9 A1 L6 2 3 R 22.1 11.38

i0 A1 L7 1 3 R 15.2 7.82

ii A1 L8 2 3 R 14.2 7.31

12 A2 L2 2 2 R 3.9 2.00

13 A2 L4 2 2 R 6.4 3.30

14 A2 L6 2 2 R 1.0 0.52

15 A2 L8 2 2 R 16.6 8.54

16 A2 LI0 2 2 R 3.4 1.75

Test Series 3: Initial study of ball roughness effect.

17 A1 L2 2 3 S 30.4 15.65

18 A1 L9 1 3 S 14 .0 7.20

19 A1 LI0 2 3 S 63.6 32.75

Test Series 4: Study of the contacting surfaces and scatter in

the experimental data (combined with Test Series 3

for the statistical analysis shown in Table 5.3)

20 A6 L2 2 0 R 19.6 I0.09

21 A6 L3 2 0 R 5.3 2 .7

J
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Table 5.3 Two-Parameter Weibull Estimate for Case 1

Study of the contacting surfaces and scatter in the experimental

data are combined here. The results shown under Test Series 1 and

4 in Table 5.2

Item Cycles Median Ranks

1 0.124xi07 0.08300

2 0.124xi07 0.20210

3 0.273xi07 0.32130

4 0.330xi07 0.44040

5 0.536xi07 0.55960

6 0.536xi07 0.67870

7 0.101xl08 0.79790

8 0.113x108 0.91700

Slope = 1.24469 LI0 = 0.94748xi06

Intercept = -19.37923 L50 = 0.43041xi07

Characteristic Life = 0.57778xi07

Correlation = 0.9633787

Table 5.4 Two-Parameter Weibull Estimate for Case 2

Study of the effect of retained austenite in the fatigue life

using the results shown as Test Series 2 in Table 5.2.

Item Cycles Median Ranks

1 0.520xi06 0.10910

2 0.175xi07 0.26550

3 0.200x107 0.42180

4 0.330xi07 0.57820

5 0.386xi07 0.73450

6 0.854xi07 0.89090

Slope = 1.11034

Intercept = -16.81940

LI0 = 0.49944xi06

L50 = 0.27247xi07

Characteristic Life = 0.37904xi07

Correlation = 0.9825556
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Figure 5.4 Weibull plot for the RCF test results presented in

Tables 5.3 and 5.4, peak pressure, Po=5.4 GPa.

Case 1 (circles) represent the statistical

analysis of the results of the Test Series 1 and 4

from Tables 5.2. Case 2 (triangles) are the

results of the study of the influence of retained

austenite on the fatigue life, i.e. Test Series 3

from Table 5.2.
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In order to perform the statistical analysis of the data

included in Table 5.2, the samples were grouped in two different

categories: a) Tests Series 1 and 4 were combined since they

represent similar test conditions, b) Six tests from Test Series

2, each with two hours of liquid nitrogen immersion, were

selected to represent similar test conditions. The results show

that the Weibull slopes for the two cases are within the range:

0.8 < e < 1.5 as expected for bearing steels, according to Harris

(1984). While the Li0 lives for the two cases are comparable, the

L50 life for Case 1 is approximately 60% higher than the L50 life

for Case 2. This difference may be due to the transformation of

the retained austenite after the immersion in liquid nitrogen. In

the case of Test Series 3, the use of smooth balls resulted in a

relatively longer failure life.

5.2.2 Artificial Defects: Following a procedure similar to the

one adopted by Lorosch (1982), the running tracks of 440C

specimens were artificially indented by a 120 ° sphero-conical

Rockwell "Brale" penetrator. The load applied to obtain the

hardness indents was approximately i0 kg, and the diameter of the

indentation was approximately equal to 0.i mm. Spalls

consistently initiated close to the hardness impression in all

cases. The specimen surface near the hardness impression was

periodically studied and photographed using the scanning electron

microscope. The general features of the spall produced by the

hardness indent are very similar to the 'classical' spall

indicated by Kumar (1987) Jn early reports. After the crack had

initiated, the specimen was inserted back in the RCF tester and

run to failure.

A total of 30 experiments were run at three different peak

Hertzian pressures, po = 3.3, 4.0 and 5.45 GPa. For each pressure,

two sets of five samples were run, one without and one with a

hardness impression. All these experiments were run with rough

balls. Summaries of the rolling tests for the three pressure

levels are presented in Tables 5.5, 5.7 and 5.9. In addition to

these, Tables 5.6, 5.8 and 5.10 present the Weibull parameters

for the tests without and with hardness impressions for the three

cases. The results were also plotted on Weibull chartsl6; Figure

5.5 shows the results for the tests run under a peak pressure of

Po = 3.3 GPa, and Figures 5.6 and 5.7.a present the results on

the same probability paper for the tests conducted at Po = 4.0
and 5.45 GPa, respectively.

In order to ascertain the influence of the microasperities

on the total life of the sample, an additional set of 13

experiments was run at a peak Hertzian pressure of Po = 5.41 GPa

w

zz

w

16 The percent of failure is expressed as a function of the

number of stress cycles.



Table 5.5(a) Rollinq experiments without hardness imDression

/_o = 3300 MPa)

149
w

m

w

Test Specimen Track Machine Hardness

# ID ID Head Indent

Ball Hours to Stress

Lot 17 Failure Cycles

1 A9 L1 1 No R 87.7 45.17 x 106

2 A9 L2 1 No R 57.3 29.51 x 106

3 A9 L3 1 No R 25.4 13.08 x 106

4 A9 L4 1 No R 69.1 35.59 x 106

5 A9 L5 1 No R 57.8 29.77 x 106

m

Table 5.5(b) Rollinq experiments with hardness impression

(D o = 3300 MPa)

W

J

Test Specimen Track Machine Hardness Ball

# ID ID Head Indent Lot

Spall Growth Life

in Stress Cycles 18
J

1 A9 L6 1 Yes R 10.15 x 106

2 A9 L7 1 Yes R 7.11 x 106

3 A9 L8 1 Yes R 16.07 x 106

4 A9 L9 1 Yes R 9.06 x 106

5 A9 LI0 1 Yes R 12.52 x 106

W

W

U

17 R = Rough lot, S = Smooth lot.

18 Spall Growth Life = (Total failure life with hardness

impression) - (Life at first observation of cracks).

n

m

w
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Table 5.6(a) Weibull parameters for rollinq test withou_

hardness impression _po = 3300 MPa)

Ite____mm Cycles Median Ranks

1 0.1308 x 108 0.1294

2 0.2951 x 108 0.3147

3 0.2977 x 108 0.5000

4 0.3559 x 108 0.6853

5 0.4517 x 108 0.8706

Slope = 2.11496 LI0 = 0.12361 x 108

Intercept = -36.78784 L50 = 0.30123 x 108

Characteristic Life = 0.35822 x 108

Mean Life = 0.31719 x 108

Correlation = 0.9503689

Table 5.6Cb) Weibull parameters for rollinq test with

hardness impression {Po = 3300 MPa)

Item Cycles Median Panks

1 0.7110 x 107 0.1294

2 0.9060 x 107 0.3147

3 0.1015 x 108 0.5000

4 0.1252 x 108 0.6853

5 0.1607 x 108 0.8706

Slope = 3.28743 LI0 = 0.6186 x 107

Intercept = -53.65850 L50 = 0.1097 x 108

Characteristic Life = 0.12266 x 108

Mean Life = 0.11038 x 108

Correlation = 0.9842627
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Table 5.7(a) Rol!inq experiments without hardness impression

/_o = 4000 MPa)

L

Test Specimen Track Machine Hardness Ball Hours to Stress

# ID ID Head Indent Lot Failure Cycles

_z

r = 1 A8 L4 1 No R 19.0 9.785 x 106

2 A8 L5 1 No R 48.5 24.980 x 106

3 A8 L6 1 No R 21.4 11.020 x 106

4 A8 L7 1 No R 25.7 13.240 x 106

5 A8 L8 1 No R 30.5 15.710 x 106

=

w

Table 5.7Cb) Rolling experiment with hardness impression

(po = 4000 MPa)

Test Specimen Track Machine Hardness Ball

# ID ID Head Indent Lot

Spall Growth Life

in Stress cycles

1 A8 L9 1 Yes R 5.974 x 106

2 A8 LI0 1 Yes R 7.828 x 106

3 A8 LII 1 Yes R 4.017 x 106

4 A8 LI2 1 Yes R 3.966 x 106

5 A8 LI3 1 Yes R 4.172 x 106

.--.

=--

w
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Table 5.8(a) Weibull parameters for rollinq test w_thout

hardness impression (p o = 4000 MPa)

Cycles

0.9785 x 107

0.1102 x 108

0.1324 x 108

0.1571 x 108

0.2498 x 108

= 2.63138

Item

1

2

3

4

5

Slope

Intercept = -36.78784

Median Ranks

0.1294

0.3147

0.5000

0.6853

0.8706

LI0 = 0.72331 x 107

L50 = 0.14799 x 108

Characteristic Life = 0.17011 x 108

Mean Life = 0.15142 x 108

Correlation = 0.9281409

Table 5.8{b) Weibull parameters for rollinq test with

hardness impression (Po = 4000 MPa)

Item Cycles

1 0.3966 x 107

Median Ranks

0.1294

2 0.4917 x 107 0.3147

3 0.4172 x 107 0.5000

4 0.5974 x 107 0.6853

5 0.7828 x 107 0.8706

Slope = 2.94662 LI0 = 0.2749 x 107

Intercept = -45.93936 L50 = 0.5210 x 107

Characteristic Life = 0.5901 x 107

Mean Life = 0.5279 x 107

Correlation = 0.8593127
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Table 5.9(a) Rolling experiment without hardness impression

(Do = 5450 MPa)
B
m

Test Specimen Track Machine Hardness

# ID ID Head Indent

Ball Hours to Stress

Lot Failure Cycles

1 A7 L4 1 No R 8.1 4.17 x 106

2 A7 L5 1 No R 8.5 4.38 x 106

3 A7 L8 1 No R 7.2 3.71 x 106

4 A7 L9 1 No R 14.2 7.31 x 106

5 A7 LI0 1 No R 12.2 6.28 x 106

m

m
l

Table 5.9(b) RollincLexperiment with hardness impression

(D e = 5450 MPa)

l

J

Test Specimen Track Machine Hardness Ball

# ID ID Head Indent Lot

Spall Growth Life

in Stress Cycles

1 A7 LII 1 Yes R 0.695 x 106

2 A7 LI2 1 Yes R 1.210 x 106

3 A8 L1 1 Yes R 1.416 x 106

4 A8 L2 1 Yes R 2.678 x 106

5 A8 L3 1 Yes R 4.532 x 106

J

W

U

g

E,--
U

W
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Table 5.10(a) Weibull Darameters for rollina test without

hardness impression (Po = 5450 MPa)

Item Cycles Median Ranks

1 0.3708 x 107 0.1294

2 0.4172 x 107 0.3147

3 0.4378 x 107 0.5000

4 0.6283 x 107 0.6853

5 0.7313 x 107 0.8706

Slope = 3.32260 LI0 = 0.29419 x 107

Intercept = -51.73905 L50 = 0.51865 x 107

Characteristic Life = 0.57913 x 107

Mean Life = 0.52146 x 107

Correlation = 0.928257

Table 5.10(b) Weibull parameters for rolling test with

hardness impression _D o = 5450 MPa)

Item Cycles Median Ranks

1 0.6953 x 106 0.1294

2 0.1210 x 107 0.3147

3 0.1416 x 107 0.5000

4 0.2678 x 107 0.6853

5 0.4532 x 107 0.8706

Slope = 1.38991

Intercept = -20.43612

LI0 = 0.4812 x 106

L50 = 0.1866 x 107

Characteristic Life = 0.24294 x 107

Mean Life = 0.22133 x 107

Correlation = 0.9734292

w
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with and without hardness impression 19, but employing smooth

ball_-_Tabl@s_5z_and_ _=!_ s_hpw the rolling test results and the

significant Weibull distribution parameters. The results are

presented in Weibull charts in Figure 5.7.b.

5.2.3 Spa!IReplication and Sectioninq Techniques: Before an

accurate 3-dimensional finite element model of a crack under

rolling contact loading can be implemented, more needs to be

known about the geometry of the spalls. Typical spall angles and

dimensions, as well as their relationship to the applied load,

the geometry of the system, the lubrication, etc., have to be

accurately defined. Spalls created during the experimental phase

of this program were studied using two different methods: a) a

replication technique, and b) a mechanical sectioning followed by

scanning microscopy observation.

The first procedure consists of the following steps: i) the

sample was degreased using methanol in an ultrasonic cleaner, 2)

a medium viscosity plastic material (vinyl polysiloxane) was then

prepared and applied on a glass microslide, 3) the sample, with

the spall under study facing down, was pressed against the

plastic and held in position for approximately 15 minutes, 4) the

sample was removed from the plastic. In order to check the

degree of fidelity with which this method reproduces the

topological features of the spall, the replicas were gold coated

and observed under the scanning electron microscope. Figure 5.8

shows photographs of a spall and the resulting gold coated

replica.

The samples were mounted on the adjustable stage of a Sloan

Dektak Surface Profile measuring device 20, which allowed up to

i00 #m displacement in the radial direction 21. The stylus of the

profilometer was positioned on the replica at a distance of

approximately 0.3 mm from the spall (this position was taken as

the origin in the y direction). The stage was moved along the

axial direction at a rate of 0.01 cm/min. Figure 5.9 shows traces

obtained with the profilometer, as well as their relative

location on the spall. A total of 18 traces were taken for each

spall at intervals of approximately 0.05 mm each. The traces were

then digitized and used to create a 3-dimensional drawing of the

19 Two samples were not used for the calculations because

they presented lives which were completely different from the

rest of the population.

20 This equipment has a sensitivity ranging from 25 Angstrom

units to a maximum of ixl06 Angstrom.

21 Relative to the spall, x is the axial direction, y is

the circumferential direction, and z is the radial direction.



Table 5 II Rollinq test results without hardness

imDression and smooth balls (Do=5410 MPa)
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J

Test Specimen Track Machine Hardness Ball Total Life in

# ID ID Head Indent Lot Stress Cycles

1 440-1 i0 2 No S 30.2 x 106

2 440-1 ii 2 No S 70.3 x 106

3 440-1 12 2 No S 4.49 x 10622

4 440-1 5 2 No S 89.1 x 106

5 440-1 6 2 No S 34.7 x 106

6 440-1 i0 2 No S 41.6 x 106

i

I

W

Weibull Distribution Parameter

LI0 = 21.0 x 106

L50 = 51.7 x 106
Mean Life = 54.5 x 106

Slope = 2.09

Correlation = 0.9386

Table 5.12 Rollinq Test Results With Hardness

Impression and smooth balls (Po=54!0 MPaL

N

Item Specimen Track Machine Hardness Ball

# ID ID Head Indent Lot

Growth Life in

Stress Cycles
U

440-LI 5 2 Yes S

440-L2 4 2 Yes S

440-L3 4 2 Yes S

440-L3 5 2 Yes S

440-L3 8 2 Yes S

440-L3 9 2 Yes S

440-L3 i0 2 Yes S

0.57 x 106

0.54 x 106

0.67 x 106

0.26 x 106

17.9 x 10623

1.24 x 106

1.19 x 106

=

W

Weibull Distribution Parameter

LI0 = 2.45 x 105

L50 = 7.07 x 105
Mean Life = 7.71 x 105

Slope = 1.7789

Correlation = 0.9700

22 This sample was not used for the Weibull distribution

calculations.

23 This sample was not used for the calculations because the

total life is significantly different than the rest of the

population.
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Traces of the spall's surface obtained with the

Dektak Surface Profilometer. The scales are indicated

in the figure, as well as the relative position of

the traces in the spall.
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spall; Figure 5.10 shows this
corresponding iso-contour map24.

drawing as well as the

Some effort has been devoted in the past to characterizing
the geometry of the spall failures. Shao et al. (1987) and Soda
(1981) have reported cracks running at 20 ° to 30 ° to the surface.
Bhat and Dolan (1982, 1983) have detected crack inclinations of
i0 ° to 20°; Voskamp (1988) has indicated the presence of cracks
running parallel to the surface. Kumar et al. (1987), among
others, have pointed out the following general features of the
spalls: a) the V-shaped spalls point in the rolling (forward)
direction, b) the cracks grow laterally and circumferentially
making a small angle with the running surface, c) the cracks grow
deeper as they extend in the direction opposite to the rolling
direction, and present a stepped like character, d) the cracks
break through to the surface at the shallow end, thus producing a
cantilever flap supported by an "unbroken" ligament at the deeper
end, e) due to secondary cracks running perpendicular to the main
crack front, portions of the flap behind the crack front break
off periodically producing wear fragments.

In order to systematically check these observations, spalls
produced for the present project were sectioned and observed in
a transmission electron microscope. The sectioning was done with
a high speed silicon carbide cutting blade; water was used as a
lubricant. Spalls were sectioned along the axial and
circumferential directions. After sectioning, the spalls were
mounted in conducting resins (Conductomet) and polished with
polishing paper grits 240, 320, 400 and 600. Pictures were taken
in a Hitachi scanning electron microscope.

Table 5.13 summarizes the results obtained from the
observations 25. Figure 5.11 shows a schematic representation of a
typical spall and the nomenclature used for the different
dimensions and angles. Figures 5.12.a-d show spalls viewed along
the radial direction and, after the sectioning, in the
circumferential direction. In the radial view, the presence of a
micropit right before the V-apex of the spall is evident (Figure
5.12.a). Figures 5.12.b and c show spalls formed in the vicinity
of hardness impressions. The top views also indicate the presence
of a surface breaking radial crack; this can also be seen in the
circumferential cut. The linking of this radial crack with the
horizontal subsurface crack results in the detachment of another

24 The 3-dimensional drawing and the iso-contour maps are
created by a Fortran program which makes use of the subroutine
DISSPLA from Integrated Software Systems Corp.

25 All these results are for a peak Hertzian pressure of Po =

5.45 GPa, for which the semi-minor and -major contact widths are

w 2 = 0.22 mm and w I = 0.40 mm respectively.
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L--

0.3,'

Sample A7
Spall L5

L

q_w

Figure 5.10 3-Dimensional digitized view of spall A7-L5

created under a pressure of Po=5.45 GPa. The
digitized 3D view results from the traces

obtained with a surface profilometer on the

surface of the plastic replica. The projection on

a plane perpendicular to the radial direction

shows the height iso-contours in the spall.



Table 5.13 Spalls Geometry
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I

g

Samp. Track Hard. Ball Wmax

ID ID Imp. Lot (mm)

_max Lmax _o Cut @ D

Wth (mm) ( ) ( ) (mm)
J

A1 L1 N R 0.965 1.20 0.72 62 C 21 0.096

A3 E1 Y R 0.824 1.02 0.78 54 C 21 0.130

A3 L2 Y R 0.929 1.15 0.86 62 C 20 0.149

A7 L1 N R 0.988 1.23 0.99 NA C NA 0.138

A7 L3 N R 0.812 1.00 0.34 NA C 20 0.075

A7 L7 N R 1.032 1.28 1.04 30 C 24 0.142

A7 LI0 N R 1.082 1.34 0.91 61 C 13 0.130

A1 L2 N S NA NA NA NA A 54/68 0.115

A1 L3 N R 0.747 0.93 0.57 55 A 21/45 0.089

A3 L3 Y R 0.845 1.05 0.85 50 A 44 0.142

A7 54 N R 0.853 1.06 0.95 30 A 67/65 0.089

A 53/60 0.130
A7 L5 N R 0.952 1.18 1.12 45 A i0 0.075

A7 L8 N R 0.900 1.12 1.07 51 A 67/65 0.108

B

m

m

Wma x - Maximum width of the spall, along axial direction (mm).

Lma x - Maximum length of the spall, in the circumferential

direction (mm).

- Angle at the apex of the spall (°).

- Angle(s) observed in the respective cut (°).

D - Depth, maximum depth for the circumferential cuts, and

local depth for the axial cuts.

C - Circumferential cut.

A - Axial cut.

N.A. - Not available

All the tests included in this table were run at a peak Hertzian

pressure of 5.45 GPa.

m
I

mm

m

m

i

i

w

m
w



166

= .

7

w

\

WMAX

• )

R.D. \%_"

\ \ \ \ \ \ CIRCUMFERENTIAL CUT

(A-A)

i

.J

_V

i FB
RADIAL VIEW

///__ "---_177;
.,,I///////////,

AXIAL CUT

(B-B)

'i
i

w

w

z:

w

Figure 5.11 Schematic representation of a spall indicating the

nomenclature used in Table 5.13, angles are

measured with respect to the -surface of the

sample.
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cantilever flap. Figures 5.13.a-d show top views of several

spalls, as well as the result of axial sectioning. The axial cuts

reveal the presence of subsurface cracks propagating in the
axial direction.

5.3 Retained Austenite

The cyclic straining of the material under the contact may

induce the gradual transformation of the retained austenite

present in the matrix 26. Test Series 2, see Table 5.2, sought to

find a connection between the change in life and a probable

change in retained austenite content. However, any changes in

life are not obvious from the Table. More testing may be required

before any conclusions may be drawn.

5.4 Nucleation vs. Growth

Experimental measurements summarized in Figure 5.1427 show

that the life of ground, 440C steel rods employed by the 3-

ball-rod tester is reduced by about 10x when the conventional,

lapped balls are replaced by the standard rough balls recommended

for use with the testing machine. The installation of a 120 _m-

diameter, 30 _m-deep dent (Rockwell C hardness indent) reduces

the contact life with rough balls by an additional factor of 3x
to 10x.

Since the effect of surface finish is confined to depths

comparable to the asperity height, the implications of these

results is that the lives of ground 440C bars obtained with the

rough balls (standard conditions) and with smooth balls are

controlled by the near surface mode. This is consistent with the

findings of Lorosch shown in Figure 5.15 for the 52100 grade.

This figure shows that only the elements with the longest lives,

i.e. N _ 108 contacts at Po = 5.4 GPa, are of the subsurface
mode.

The installation of artificial dents makes it possible to

follow the progress of spall nucleation and growth. Figures

5.16.a through c show the evolution of a surface initiated

defect, in the proximity of a hardness impression. These pictures

were taken from sample A6, subjected to Po=5.4 GPa, after 4, 6

and 10.3 hours (approximately 2.1, 3.1 and 5.3 million cycles

respectively). Figure 5.17 also shows the effect of a small

surface indent in the raceway of a sampie subjected to a rolling

contact pressure of Po/k=8.9.

26 The retained austenite may be as high as 45%.

27 This figure is obtained from the results presented in

Tables 5.5(a)-5.12.
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Figure 5.14 Fatigue lives versus contact stress level for

440-C RCF test samples. Note: these are the

nucleation and growth lives for unindented

samples. _ The lives for dented samples are

approximately equal to the growth part because

nucleation is very short. The keys for the figure

are indicated in the graph.
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The growth life, N G, is defined as the portion of the total

life consumed by the cyclic growth of a I0 _m-surface crack into

a full fledged spall, as seen in Figure 5.17. The corresponding

initiation life, N I, is obtained by subtracting N G from the total

life, N, obtained by testing samples without a dent. The studies

have shown that the growth life is relatively insensitive to the

surface conditions and becomes a smaller fraction of the total as

the severity of surface defects is reduced. In the case of the

ground 440C steel rods tested at Po = 5.4 GPa, NG/N = 0.4 for

rough balls and NG/N = 0.02 for smooth balls. The conclusion is

that the cyclic growth of £he spall can dominate the contact life
of the near-surface initiated cracks when the surface is rough

or damaged; nucleation of the spall dominates when the surface is

smooth and undamaged.

Preliminary studies show that nucleated cracks fail to grow

at a contact pressure of Po = 2.4 GPa. This result points to the

existence of a threshold for growth.

5.5 Surface Roughness

DeMul (1987) and Hamrock (1990), among others, have pointed

out the important role played by surface asperities, bumps,

grooves and dents in the near-surface failure mode. These defects

cause stationary pressure spikes, conditioned by "micro" EHDL

effects and produce peak amounts of plasticity at depths

corresponding roughly with the surface regularity depth or height

(2 to 20 #m) below the surface.

Surface roughness features of the specimens and balls are

characterized by peaks and valleys caused during the surface

preparation. Figure 5.18 shows the running surface on specimen

A6-L2: a) after 0.26 million stress cycles, and b) after 2.73

million cycles, c) spall formation after 10.09 million stress

cycles. Examination of the running surface on the specimens

indicates that small surface roughness features are gradually

smoothed out with ' ......' ........................................................increaslng numbers of stress cycles. However,

deeper and more prominent features persist even after 15 million

cycles. Similar observations are valid for the case of the

roughened balls used in the RCF tests. The prominent peaks and

valleys persist for millions of cycles and represent possible

crack initiation sites. There is evidence (Fighre 5.19) that

nearby located microspalls may link together, thus providing the

initial site for crack initiation.

W
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5.6 Replication and Metallographic Studies of Spalls in 440C

There is a need for a more detailed description of the 3-

dimensional geometry of the spalls, as well as of the different

crack propagation mechanisms leading to that geometry. There have

been previous three dimensional analyses of cracks under rolling
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_=

Figure 5.17 Effects of a small, 120 _m dent (A) in the raceway

of a bearing steel RCF sample subjected to rolling

_=_contact at Po/k=8.9. (a) dent [A] before test, (b)
crack nucleus [B] is visible on surface after N =
0.62xi06 contacts, (c) N = 1.3x106 contacts, and

(d) spall [C] forms after N = 1.5x106 contacts.

The rolling direction is also indicated, i.e.R.D.
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Figure 5.18

"i

Backscattered electron image of the specimen

running surface (A6TL2), after (a) 0.26xi06

cycles, (b) 2.73xi06 cycles, and (c) lower

magnification secondary electron micrograph of the

spall formed after 2.73xi016 cycles. The boxed

area shown in (c) is the location chosen for the

micrograph in (a) and (b). The rolling direction

is also indicated, i.e.R.D.
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Figure 5.19 Micrograph of the running surface of the 52100 RCF

test balls showing two nearby located microspalls

linked together.
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contact by Kaneta and Murakami (1985a, 1985b, 1985c, 1986, 1987).

Although these address the problem of the lubricant induced

opening mode and crack face friction, they failed to consider the

cyclic plasticity induced under rolling contact loading.

The top view and circumferential cuts shown in Figures

5.12.a-d, reveal several important features: a) the cracks seem

to have initiated at micro-pits near the tip of the spall (this

is provided in the cases of Figures 5.12.b and c by the hardness

indentation), b) the crack at the V-apex slightly undercuts the

surface, thus indicating a small amount of crack propagation in

the reverse direction (more evident in 5.12.a), c) the main

cracks propagate at a shallow angle from the surface up to a

depth of approximately 60-80 #m (evidence suggests that the crack

front is straight along the axial direction and diverges from the

initiation point at an angle of 50 ° - 60°), d) the cracks then

propagate parallel to the surface for 130-200 _m, after which

they change direction to an angle of 45 ° from the surface, e)

this process is apparently being repeated cyclicly as evidenced

by the unbroken flap still attached at the tip of the spall

(clearly seen in 5.12.a).

The micrographs shown in Figures 5.13.a-d present axial cuts

of different spalls. These figures suggest that subsurface crack

propagation may also take place along the axial direction, as

evidenced by the unbroken flap still attached to the surface. The

results in Table 5.13 indicate that the maximum spall width is

larger than the Hertzian (elastic) contact width, however the

spalls were always confined to the wear track. Although some

degree of conformity ("sink in") is expected to occur between the

rod and ball, due to plastic deformation of the rod, the

experimental evidence suggests that the balls are oscillating

along the axial direction. This out-of-plane oscillation, and its

associated shear tractions, may provide the necessary driving

force for the subsurface, axial crack propagation.

This cyci_c change _n d_frections would indicate that once the

crack has been surface initiated by the micro pressure spikes,

its propagation is the result of more than one mechanism. Bower

(1988) has indicated that the fluid entrapment mechanism would

play an important role in crack propagation. However this

mechanism predicts that the crack would turn down, away from the

surface, which is not supported by our experiments.

The complicated non-proportional cycle of modes I and II

stress intensities at the tip of the crack is more likely to be

dictated by a combination of the entrapment mechanism and the

resolved cyclic in-plane shear stress. Additionally, the cyclic

bending to which the unbroken flap is subjected may favor the

formation of cracks connecting the main crack to the surface.

5.7 Rolling Contact of Hardened Aluminum
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Rolling tests and finite element calculations using

properties of 7075-T6 aluminum have been carried out as part of

the present project. Aluminum was chosen primarily because the

damage to the microstructure resulting in sub-surface crack

formation is easily obtained within a short testing time, t = 0.5

- 2.0 hours. In the case of 440C steel, much longer hours of

operation are needed to cause crack initiation. Moreover, post-

failure electron microscope studies of the spalls would indicate

that they are primarily surface initiated cracks.

Additionally, the cyclic stress-strain hysteresis response of

7075-T6 aluminum is qualitatively similar to 440C bearing

steels, as indicated in previous sections. Therefore, aluminum

proves to be an ideal material to study sub-surface originated

failure under rolling contact.

The experiments and calculations performed on this material

lead to the following conclusions:

i) The depths at which cracks are observed to form in the RCF

test samples are observed to correlate well with the maximum

depth at which the maximum cyclic plasticity is calculated, see

Figure 3.4.11. Subsurface crack initiation may play a more

important role in this material. The accumulation of damage in

the plastically strained region extending to a depth of 0.5w

below the surface as shown in Figure 3.4.10, conc'irrent with a

smoothing out of surface defects 28, leads to the translating

Hertzian pressure dominated failure.

2) The region where the largest number of cracks is observed is

the region where the residual stresses are not compressive and

there is still some cyclic plasticity, see Figure 3.4.12.

Compressive stresses inhibit cyclic crack growth by enhancing the

frictional dissipation between the faces of the crack.

5.8 Conclusions

No connection was found between the amount of retained

austenite and the life of the rolling element. More testing may

be required before any conclusions may be drawn.

The cyclic growth of the spall dominates the total life of

the elements with surface initiated cracks, when the surface is

rough or damaged. Nucleation is the controlling event in those

samples with smooth and undamaged surfaces.

Surface asperities, grooves, dents and bumps introduced

28 This material shows strong evidence of lateral flow, i.e.

plohghing, due to the rolling loading.
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during manufacturing of the sample, play an important role in the
near-surface failure mode. Prominent features are not smeared out
even after several million cycles, thus providing sites for the
highly localized, cyclic pressure spikes responsible for failure.

....The 3-dimensi-o-n-al .....features displayed by the spalls would
indicate that the surface initiated cracks would propagate
driven by several mechanisms. The individual contribution of the
complicated, non-proportional cycle of Modes I, II and III,
remains to be determined, and it certainly warrants further
research in this area.
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_ 6.1 Finite Element Calculations of Con£act Plasticity

The contact plasticity has 2 components: (i) the transient

part which is responsible for the radial displacements and

residual stresses and (ii) the steady state or continuing

plasticity which leads to damage accumulation and crack

nucleation• There is evidence that the ELKP-model, which

confines the transient to the first contact cycle, does not

describe the transient adequately. The residual stresses for 2-

dimensional, line contact derived from finite element calcula-

tions with ELKP-properties understate the peak residual stresses

by a factor of _ 3 and place the peak at a relative depth of z/w

= 1.3 instead of at z/w = 0.8, where it is observed (Hahn et

al., 1987)• Recently, the authors have treated the 2-dimensional

contact with the more sophisticated, non-linear, Mroz-type, 2-

surface representation devised by McDowell (McDowell, 1985,

Howell, 199i). In this case the transient extends over 15 and

possibly more contacts, and while the residual stresses peak at

the correct depth, the extrapolated values of the residual

stresses are _3 times larger than the actual values• The steady

state cyclic plasticity obtained with the non-linear model agrees
with the results obtained with ELKP-behavior. It should also be

noted that the 3-dimensionalcontact plastic zone observed in the

aluminum samples in Section 3.4 is in good accord with the ELKP-

calculations. These findings support the view that the

descriptions of the continuing cyclic plasticity derived from the

finite eiement calculations with ELKP-properties are reliable.

However, the cyclic constitutive relations require more work to

provide reliable descriptions of the transient and the residual
stresses.

While a single set of ELKP-properties has been used so far

to characterized hardened steel, it must be noted that the

kinematic yield strength, aK, is sensitive to microstructure. An

ongoing study by the authors shows that a K decreases by about 45%

at room temperature as the amount of retained austenite increases

from 16% to 4§%. The los s of cyclic strength is accompanied by a

more than 10-fold increase in the cyclic life and both of these

changes occur even though the retained austenite is transformed

by the cyclic deformation. While increases in the rolling

contact life with retained austenite have been reported for 52100

steel, these could not be demonstrated in the present work on
440C steel•

As demonstrated by the 3 dimensional finite element

calculations, the addition of a sliding component with heating,

results in the introduction of tensile surface residual stresses.

The peak value of cyclic plasticity takes place at approximately

the same depth as for 3-dimensional pure rolling, i.e. z/w I =

w
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0.329 , with approximately the same magnitude. However, the

sliding component causes a non-zero cyclic plastic component at

the surface. The combined effect of the tensile residual stresses

and the cyclic plasticity may lead to an exhaustion of ductility,

i.e. damage accumulation, thus giving support to the concept of

surface originated spall failure (see Section 6.2).

6.2 Spall Nucleation

The present study demonstrates that the spall nucleation

component dominates the rolling contact life when the contact

surfaces are smooth, defect free and well lubricated. The work

also shows, in agreement with previous studies, that modest

changes in the surface roughness of the counterface alter the

contact life by =10-fold. The relatively large indents affect a

=60-fold reduction in the contact life. These findings are

consistent with recent analyses of the effects of surface

irregulaties, which show that submicron-size grooves or

asperities can produce large stationary pressure spikes near the

defect (Goglia et al., 1984; de Mulet al., 1987; Hamrock, 1990).

Rolling-plus-sliding, with attending frictional tractions, also

produces more plasticity closer to or at the surface. As

illustrated in Section 3.5, even larger amounts of near-surface

plasticity that compete with the peak subsurface values are

generated when the sliding is accompanied by intense frictional

heating. Either individually or in combination, surface irregu-

larities, sliding and frictional heating can shift the region of

peak plasticity and damage from the subsurface to the near-

surface, thereby altering the mode of spall failure. Work must

be done to treat the plasticity arising from surface

irregularites so that this major contribution can be factored
into the analysis of nucleation.

The large reduction in the contact life produced by small

indents may provide a means for accelerating contact testing.

Service life is frequently limited by indents from debris or

tramp abrasive particles and natural asperities. Consequently,
rolling contact tests might prove more meaningful, and be of

shorter duration, if the test samples were fitted at the start

with well designed and pedigreed surface defects. This concept

is exploited in the 3-ball-rod test which is designed to be

conducted with artificially roughened balls. To provide a

further test of this idea, the correlation of the nucleation

lives obtained with and without defects should be examined. The

contribution of inclusion particles may be a complicating factor

here. This is because the cyclically deformed volume produced

by a small, isolated, surface irregularity is so small that the
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29 Where w I is the semi-major half-contact width; this is

equivalent to z/w2= 0.53, in terms of the semi-minor half-contact
width.
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likelihood of an interaction with an inclusion particle is

greatly reduced.

In order to perform quantitative treatments of the spall

nucleation life, the accumulated damage produced by the

continuing cyclic plasticity and the conditions for crack

nucleation must be treated. The studies performed on aluminum

samples illustrate the complicated nature of the subsurface

nucleation process. The results indicate that neither the rates

of nucleation nor the rate Of crack growth correlate with the

amounts of cyclic plasticity. The findings suggest that residual

stresses may be playing an important role. The reasons for the
=104-fold shorter crack nucleation lives at the same relative

contact pressure displayed by the hardened aluminum compared with

steel are not clear. It is possible that the higher homologous

temperature of the aluminum tests and resulting greater atom

mobility may facilitate microstructural changes leading to crack

nucleation. Since microstructural changes also play a role in

the nucleation of failure in steel (Swahn et al., 1976), the

stability of specific microstructural elements may affect

nucleation.

6.3 Growth and Spalling

The present study shows that the spall growth life is in the

range N = 106 to 107 contacts, and is relatively insensitive to

the condition of the surface. Similar results have been reported

by Shao et al. (1987) for carburized steel. The implication is

that the spall growth component is a large fraction of the total

life when nucleation is "easy" and the total life is short, e.g.

N < 107 contacts, and a tiny fraction of the total life when nu-

cleation is difficult and the total life is long, e.g., N = I0 I0

contacts. The tests also offer evidence of a threshold for crack

growth, i.e., crack nuclei about i0 _m-long on the surface failed

to grow at a contact pressure P0 = 2.4 GPa.

The fracture mechanics analyses examined in Section 4 reveal

that the Hertzian stresses, centrifugal stresses, thermal stres-

ses and the pressure of fluid in the crack cavity all contribute

to a complex supperposition of Mode I, Mode II and Mode III

crack driving forces. However, the largest contribution appears

to be the Mode I driving force resulting from the fluid pressure.

Further, it appears that 2-dimensional models of the 3-

dimensional crack overstate the driving force.

To critically test these findings, fracture mechanics calcu-

lations of the spall growth life were carried out for the condi-

tions in the 3-ball-rod testing machine, and compared with the

L=

w
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measurements of the 440C growth life 30 . The results are

presented in Figure 6.2. They show that the fracture

calculations predict both the spall growth lives, at least within

an order of magnitude. They also predict the existence of a

threshold at roughly the observed contact pressure. Considerable

uncertainty is involved in the calculations since the da/dN
characteristics of the 440C steel were not known and the details

of the dimensional growth were not considered. Further, the Mode

II driving force was neglected. Consistent with this, the

calculated lives are longer than the measured ones.

The metallographic observations of a step-wise growth

suggest that the spall advances into the surface with the lateral

sides of the spall attached. At a later stage the latteral sides

rupture converting the spall into a loose flap. After

propagating parallel to the surface for a short distance, the

spall branches away from the surface. Simultaneously, a crack

seems to initiate from the surface attending to the cyclic

tensile stresses due to the bending of the loose flap (Figure

5.12a). This sets the stage for the formation of the first spall

fragment. With the lateral portions of the remaining branch

still intact, this branch resumes growth into the material until

the lateral connections again break to produce a flap. One

important difference is that large, rising and falling pressure

spikes are expected to form around the cavity left by the first

spall fragment. These pressure spikes will contribute to the

crack driving force and accelerate the pace of spall growth.

6.4 Conclusions

(i) The findings reported here, taken together with other

recent work, support the view that the descriptions of

continuing cyclic plasticity derived from finite element

calculations with ELKP-properties are reliable. However, the

treatment of the cyclic constitutive relations must be improved

to obtain reliable descriptions of the transient and the residual

stresses.
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30 The total number of stress cycles was calculated by

introducing the Mode I crack driving force derived in Section 4.4

(Equation 4.1) into a Paris' type equation, i.e. da/dN = A(_K) n.

The constants A and n fit the stage II portion of the results

obtained by Bamberger et al. (1982), for different bearing steels

(refer to Figure 6.1 and Table 6.1). Numerical integration was

carried out assuming an initial crack nucleus of, a o = i0 _m, and

a final crack length of, af = 240 _m. Small departures from the

linear, stage II, portion of the resistance curve lead to a large

(3 - 4 orders of magnitude) increase in total number of stress

cycles. This can be related to the pressence of an effective

threshold to crack propagation.
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(ii) Either individually or in combination, surface

irregularities, rolling-plus sliding and frictional heating can

shift the region of peak plasticity and damage from the

subsurface to the near-surface, thereby promoting near-surface

spall failure.

(iii) The spall nucleation component dominates the rolling

contact life of 440C steel when the contact surfaces are smooth,

defect free and well lubricated. Small surface irregularities

reduce the nucleation life drastically.

(iv) The possibility of accelerating rolling contact testing

by fitting samples at the start with well designed and pedigreed

surface defects deserves further study.

(v) Studies using hardened aluminum as a model material

suggest that residual stresses, atom mobility and the stability

of microstructural elements affect the nucleation life.

(vi) The spall growth component is a large fraction of the

contact life when nucleation is "easy" and the total life is

short, e.g. N < 107 contacts, and it is a tiny fraction of the

total life when nucleation is difficult and the total life is

long, e.g. N = i0 I0 contacts.

(vii) The experiments provide evidence of a threshold for

crack growth.

(viii) The measurements of the spall growth life are in

reasonable accord with fracture mechanics predictions based on

the Mode I component of the crack driving force generated by 3-

dimensional cracks with fluid pressure in the crack cavity. The

calculations predict both the growth lives within an order of

magnitude and the existence of a threshold close to the observed

contact pressure.
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Figure 6.1 Resistance curves for different bearing steels,

after Bamberger et al. (1982). Additional

information is presente in Table 6.1.
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Table 6.1 Heat Treaments and Fracture Toughness

Data for Bearing Steels, after

Bamberger et al. (1982).
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Steel Heat Hardness AKth Kic
Treatment Rc (MPa.Jm) (MPa.Jm)

M50 A 63 3.1 17.7

M50 B 61 4.2 23.0

M50 C 43 5.0 48.0

M50 D 44 3.8 51.0

v

w

m

w

Heat Treatment

A Austenitized at 1095 °C

Tempered at 540 °C, 3 times.

B

C

Austenitized at 1095 °C

Tempered at 540 °C, 5 times.

Austenitized at 1095 °C

Tempered at 650 °C, 5 times.

D Austenitized at 1095 °C

Cooled at -85 °C

Tempered at 540 °C, 3 times.
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Figure 6.2 Fatigue Life (number of stress cycles to failure)

versus the Contact Stress (peak Hertzian pressure)

for bearing steel 440C. The figure indicates the

experimentally obtained growth lives obtained for

tests run with rough and smooth balls. The band

represents the upper and lower limits for the

total number of cycles caiculated using the

results from Section 4.4, and the data from Figure

6.1 and Table 6.1.
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7. CONCLUSIONS

The following general conclusions can be drawn from the work

performed for the present contract:

The ELKP-parameters derived from the hysteresis loops of the

440C steel are similar to those previously reported for hardened

AISI 1070 and 52100 bearing steels. After correction for strain

rate effects, a k = 1050 MPa and M = 188 GPa.

The resistance of aluminum 7075-T6 under cyclic torsion is

1/3 to 1/2 of that displayed by 440C steel. However the

hysteresis loops reveal a kinematic behavior analogous to the

440C.

Hardened aluminum proves to be a reasonably good model

material. Cyclic plasticity can be revealed metallographically,

subsurface failure takes place after a moderate number of stress

cycles, even at low contact pressures. These qualities may

provide opportunities for: i) studying the effects of residual

stresses, ii) verification of constitutive formulations, iii)

testing fracture mechanics approaches to spall growth analyses.

Three dimensional finite element calculations of repeated

frictionless rolling contact have been carried out for ELKP

properties of an AISI 440C bearing steel, at relative Hertzian

pressures of Po/kk _ 4.0, 6.6 and 8.9, using the geometry of the

three ball/rod contact fatigue testing machine. The subsurface

stresses, plastic strains, residual stresses and plastic work

done are evaluated. Equivalent stresses above the kinematic yield

strength extend to the surface only for the highest load level.

The peak equivalent plastic strain occurs at approximately 0.25w 1

(Wl/W 2 = 1.77) for all load cases; the values of these strains
are 4.4xi0 -4, 2.33xi0 -3, and 4.0x10 -3, for the low, medium and

high loads, respectively.

Three dimensional finite element calculations of repeated

frictionless rolling contact have been carried out for ELKP

properties of the 7075-T6 aluminum alloy, at a relative Hertzian

pressure of Po/kk = 5.7, using the geometry of the three ball/rod

contact fatigue testing machine. The subsurface stresses, plastic

strains, and residual stresses are evaluated. The peak plastic

strain amplitude, _£Pmax/2 = 1.6x10 -3, occurs at a relative depth

of z/w = 0.4 below the surface. Peak residual stresses obtained

are arx(max) = 26.4 MPa, and ary(max) = 39.7 MPa, occuring at a
relative depth of z/w = 0.9.

Two dimensional finite element calculations of repeated

rolling-plus-sliding contact have been carried out for ELKP

properties of an AISI 440C beiring steel, at relative Hertzian

pressures of Po/kk = 5.0. Plastic strains, residual stresses and
temperature distributions are presented. Plastic strains are

w



197

shown to be considerable lower for ELKP properties than they for

an elastic-perfectly-plastic material (Kulkarni et al., 1989).

Steep temperature gradients close to the surface produce high

compressive stresses; the ensuing cooling causes residual tensile

stresses, a possible mechanism for thermo-cracking. Thermo-

mechanical behavior is highly dependent on the material

properties, which also may be temperature dependent. A more

precise definition of these properties, especially the thermal

film coefficient, is recommended.

Efforts have been made to extend the Bower treatment of 2-

dimensional, surface breaking cracks with fluid in the crack

cavity to smaller relative crack lengths but the Bower algorithm

proved unstable for a/w < 0.5. In the range 0.5 < a/w < 1.5, the

values of the normalized driving force, K/PoJa , decrease with

the relative crack length, a/w, for lubricated contact, but

increase for dry contact.

A compilation of _K-driving force values of surface

breaking cracks has been assembled. This reveals that fluid in

the crack cavity, centrifugal stresses, and thermal stresses add

significantly to the crack driving force, particularly for

relatively short cracks, a/w < 0.I. Fluid in the crack cavity is

especially potent, producing relatively large Mode I driving

force values. The driving forces generated by 3-dimensional

cracks are -20% of the values calculated for 2-dimensional

cracks.

As a result of the modest driving force generated by small,

3-dimensional cracks, surface cracks as large as a -i0 _m would

not be expected to grow in idealized smooth, well lubricated

bearings with a Mode I, _KTHR_SH = 5 MPa subjected to a Hertzian

Pressure, P0 = 2.4 GPa. Thls is consistent with experimental
results described in Section 5.4.

No connection was found between the amount of retained

austenite and the life of the rolling element. More testing may

be required before any conclusions may be drawn.

The cyclic growth of the spall dominates the total life of

the elements with surface initiated cracks, when the surface is

rough or damaged. Nucleation is the controlling event in those

samples with smooth and undamaged surfaces.

Surface asperities, grooves, dents and bumps introduced

during manufacturing of the sample play an important role in the

near-surface failure mode. Prominent features are not smeared out

even after several million cycles, thus providing sites for the

highly localized, cyclic pressure spikes responsible for failure.

The 3-dimensional features displayed by the spalls would

indicate that the surface initiated cracks would propagate
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driven by several mechanisms. The individual contribution of the

complicated, non-proportional cycle of Modes I, II and III,

remains to be determined, and it certainly warrants further
research in this area.

The findings reported here taken together with other recent

work support the view that the descriptions of continuing cyclic

plasticity derived from finite element calculations with ELKP-

properties are reliable. However, the treatment of the cyclic

constitutive relations must be improved to obtain reliable

descriptions of the transient and residual stresses.

Either individually or in combination, surface

irregularities, rolling-plus sliding and frictional heating can

shift the region of peak plasticity and damage from the

subsurface to the near-surface, thereby promoting near-surface

spall failure.

The spall nucleation component dominates the rolling contact

life of 440C steel when the contact surfaces are smooth, defect

free and well lubricated. Small surface irregularities reduce the

nucleation life drastically.

The possibility of accelerating rolling contact testing by

fitting samples at the start with well designed and pedigreed

surface defects deserves further study.

Studies using hardened aluminum as a model material suggest

that residual stresses, atom mobility and the stability of
microstructural elements affect the nucleation life.

The spall growth component is a large fraction of the

contact life when nucleation is "easy" and the total life is

short, e.g. N < 107 contacts, and it is a tiny fraction of the

total life when nucleation is difficult and the total life is

long, e.g. N _ i0 I0 contacts.

The experiments provide evidence of a threshold for crack

growth.

The measurements of the spall growth life are in reasonable

accord with fracture mechanics predictions based on the Mode I

component of the crack driving force generated by 3-dimensional

cracks with fluid pressure in the crack cavity. The calculations

predict both the growth lives within an order of magnitude and
the existence of a threshold close to the observed contact

pressure.
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Frictionless 3-D contact is simulated by translating a Hertzian pressure

distribution across the surface of a semi-infinite body. This semi-infinite body is

represented by a 3-D finite element mesh with appropriate displacement bound-

ary conditions on the non-surface sides of the mesh. The boundary nodes are elas-

tically displaced for each translating increment using the Boussinesq's solution to

the problem of a concentrated force acting on the surface of a semi-infinite body.

J

For this purpose, the Hertzian pressure distribution is discretized into numerous

concentrated forces. The boundary displacements due to each concentrated force

are calculated and superposed for each increment. This appendix presents the

detailed derivation of the Boussinesq's solution for the case of the concentrated

normal force, and then is extended for the case of the normal plus the tangential

forces acting on the half-space.

There are two ways of solving problems in elasticity. The first way is to

find a set of stresses and strains which satisfy certain equations. This is the First

Boundary Value Problem of Elasticity. The stresses must satisfy the equilibrium

equations and the boundary conditions. The strains must satisfy the compatibility

equations and the stresses must be related to the strains through appropriate

stress-strain relations [See Appendix 2]. Alternately, as for Boussinesq's solution,

it is possible to reduce the above set of equations to three equations, the Navier

equations, involving only the displacements, u i. The problem is then known as the

Second Boundary-Value Problem of Elasticity. The Navier equations in tensor

notation are
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for simply connected domains bounded by a smooth surface, r where V 2 is the

Laplacian operator, X and _ or G are Lame's constants, and v is the invariant

defined as, v---- u... The solution of the Navier equations appropriate to the
t,t

deformation of an elastic body by the concentrated force, Fi°, applied at some

point, (i' can be deduced from the particular integral due to Lord Kelvin,

ui(x)=A f _. [B--j- - (!) i(xj-_j)F(¢)]& (2)

w

-.!

where

A--
s u(x+2u)'
),+3#

B= X'_-jU"S ,

1 0 1

t

and

is the distance from the field point, xi, to the variable point, (i in r. It is sup-

posed that the body forces F i are distributed over some subregion, r1 of r, includ-

ing the point, _i' and vanish over the rest of the region. The resultant of the body

forces acting on r1 is

_°= f rFedr

Let F i increase in such a way that this integral has a finite limit, F.°_ as rI ap-
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proaches 0, to arrive at the notion of the concentrated force, F. ° acting at the
1

point, (i" Therefore, the displacements, ui(x), produced at the point x i _ _i' are
w

F .0
x÷a, , x+_ (_i- _'i)(%-'_y)

,,.(_)_ .-- + F° (a)
, 8_(:_+2#) r 8_r_,(),+2#) ra

m

g

These expressions satisfy the homogeneous Navier equations at all points of the

region except at the point of application of the force, x i = {i" But if this point is

deleted from t]ae region by enclosing it in a sphere S of small radius a, the above

solution in the remaining region corresponds to the deformation present in a

body, _, with a cavity, S, subjected to the action of forces with the resultant, F. °.1

For the case considered, let F. ° act at the origin, _i=0 and Fl°=F2°=0, and]

Fa°=P, to get

l

m

i

Nm

J

xcex 3

_%=c--T-,_=1,2 (4)
r

and

2

u C" x+3/_ xâ ,
3= tyVT;+7) (s)

),+/_

where C=87r_(X+2_) and r2-_xizi.

rij=XUk,kaij + /_(ui,j+uj, i)

The stresses can be calculated by
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Figure A.I.I A concentrated vertical force, P, and a tangential

force, T, acting on the surface of a half space.
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The tractions produced by these stresses over the sphere S of radius 1=a, are

determined from

W. _ _r..v.

U J

m

g

where uj = xj/a. Integrating these tractions over the surface of the sphere, r=a,

we obtain the components of the resultant force exerted on S by matter exterior

to S. To solve the problem of deformation of the elastic half-space bounded by a

plane subjected to the action of a concentrated force, it is necessary to account

for the singularity at x i ---- _i" Boussinesq combined the earlier derived equations

(11) and (12) with certain other singular solutions of Navier's equations to get the

dilationless (v=0) solution of Navier's equations, so long as r _ 0, namely

m_

c_

_ (6)
r(r+x3)

R

I

U

and
M

D

 '3=7 (7)

I

where r 2 _--- XiXi, and D = constant.

Now let us calculate the deformation of an elastic half space, X 3 _ 0,

due to a concentrated force, P, applied at the origin, acting in the positive direc-

tion of the x3-axis (see Fig. A.2.1) Since the point of application of the load is a

singular point in the solution of Navier's equations, delete it from x 3 >_ 0 by

mm

R

I

l

==

g
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describing a hemisphere of small radius 'a'a' and consider the semi-infinite region

bounded by the hemisphere and the xlx2-plane. Construct a solution such that

the resultant of all external stresses acting on the hemisphere is P, and ri3 -----0,

over the rest of the boundary. Adding equations (11) to (13), and (12) to (14) and

applying appropriate boundary conditions, we get equations (15) and (16),

p X3Xo_ # xa

and

2
P z3 k+2/z 1

_3=Tj(r-Y + x+--7;) (9)

r--

Rewriting these equations using

E

and

Ebs

X--

where E is the Young's modulus and v is the Poisson's ratio, we get

(l+v)P x3xa xa

_- _-( r_ (1-_.) _), .=1,_ (10)

and
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2

(l+v)P.(x3 1
u3- '7 + ;) (11)

The same line of reasoning could be used to derive the appropriate

boundary displacements for the case where the half-space is acted upon by a tan-

gential force, T 1.

(l+v)T,zy . . xy . (l+v)Pxz . x

-- _ -(1-2V)r(--_+z) ] (12)

W

B

(l+v)T,1 y2 . .. 1 y2 , (l+v)P, yz .

uy-- _rE [r+_+[1-2v)ir-?-z r(rTzy+_rE [7--il--2v)r(r_z) ] (13)

(l+v)T, yz . y (l+v)P,. .1 z2,

Uz-- _rE [_+(1--2v)_]+_[2[1-v);+_]

The SUBROUTINE DISP in ABAQUS uses the last three equations to

prescribe the elastic displacements on the non-surface boundary nodes for each

translating increment.

(14)

l

M

m

M

m

B

=

31T is related to the normal force P through the

coefficient g.

friction
m
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APPENDIX 2

BOUNDARY CONDITIONS FOR 2-D FRICTIONAL CONTACT
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Frictional 2-D rolling contact is simulated by translating a Hertzian

thermo-mechanical load across the surface of a semi-infinite body. The thermo-

mechanical load consists of three parts -

2 2

1. normal mechanical pressure, p(x)=po(1 - --'-_) 1/2,
W

2. tangential surface traction, due to friction, t(x) ---- vp(x) and

3. thermal load, due to the friction, q(x) = v t(x)

The semi-infinite body is represented by a 2-D plane strain finite ele-

ment mesh with appropriate boundaries. Describing the boundary conditions at

the non-surface boundary nodes, consists of two problems,

1. Prescribing the boundary temperatures due to the translating thermal
load and

2. Prescribing the boundary displacements due to the translating

thermo-mechanical load.

m:!

Boundary. Temper atures

Physical visualization of the problem, in conjunction with the work of

Carslaw and Jaeger (1959), implies that the temperature gradients, which give

rise to thermal stresses and distortions, are large only in the vicinity of the con-

tact, extending to depth of a maximum of 0.5w. Hence, the temperatures at the

bottom of the mesh could be fixed at the ambient temperature. In this part of the

appendix, mathematical equations have been developed to reach the above con-

clusion, which extend the work of Carslaw and Jaeger, to predict temperatures in

a half space due to a translating non-uniform heat source. Carslaw and Jaeger

derived the solution, for the temperature distribution in an infinite solid, due to

g

g

m

U

D

i ;
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w

Figure A.2.1 The thermal load, q(x), translating across the

surface of the half-space at a velocity, V.
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'Q' units of heat/unit length liberated along the z-axis (See Fig. A.2.1), at the

point (x',0,y').

The temperature, T ---- e - eo, at a point (x,0,y) at time 't' is
I

T Q exp[ -
-- 4_"Kt

(___,)2 + (v_¢)2
4_t ]

D

where, 0° = ambient temperature, K = thermal conductivity, _ _ thermal dif-

fusivity = K/pC, p = density and C _ specific heat capacity . The result

needed, for a half-space, can be obtained by appropriately choosing the heat

source, Q, and integrating the above equation. The variation of the non-uniform

translating heat source, distributed over a width 2w, is given by

z 2

1 _ i/2 (15)
W

mi

I

and hence the limits of integration are from -w to w. Also, for temperatures at

the current state, we have the heat source that has been moving for an infinite

time at a velocity 'v' across the half-space. Hence, the limits for the integration

with respect to time are from 0 to oo, with the present time being oo. At an ear-

lier time 't', the center of the heat source was located at -Vt. Now, the heat

source 'Q' is 2qdx'dt heat units/unit length (to account for the semi-infinite solid)

through the point (x'-Vt,0,0). The temperature T' is now given by

W

=

m
w

T' qdz'dt exp[ - ( x - z' + Vt )2 + y 2
-- 21rKt 4_t ']- (16)

m

m
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| _

E =

The required result is obtained by integrating the above equation, using equation

(20) with respect to 'x' over the limits -w to w and with respect to time 't' from 0

to oo. Hence,

xl2 co dtl
T--f f T': q°2_Kf_ (1 -- _) a/2dx' fo -?exp[-

w

( z- z' + Vt )2 + y 2

4_ct ]

Evaluating the time integral, the above equation becomes

_ZE

zl 2
qo w -V(z- z') V )2 211/2} (1 "_) 1/2dx' (17)T-- 2rK f-w e 2_ Ko{_-_[( x- z' + y -

to

= : :=

where Ko(x ) is the modified Bessel function of the second kind of order zero. To

enable Gaussian integration the limits of the integral need to be changed to -1 to

1.

i __o.

2 :

-,_ (_ - _,)qo

T-- 2_rK f l l e 2_ Ko{_[(x-wu)2+y2]l/2}(1 - u2)l/2wdu (18)

For the calculations, v : 0.9 m/s, _ ---_ 1.4E-5 m2/s and the smallest value of the

argument of K ° comes out to be 192.0 and its value tends to zero and e tends to

eo. Hence, the temperatures on the bottom of the mesh are fixed to ambient

values and the effect of these temperatures in calculating the boundary displace-

ments is neglected.
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Figure A.2.2 A concentrated vertical force, PV, acting on the

surface of a half-plane.
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Boundary Displacements

In Appendix B, two methods of solving problems in elasticity were men-

tioned and the second method, namely, the Second Boundary Value Problem of

Elasticity, was used to derive the solution to Boussinesq's problem. Here, for the

2-D plane strain problem, the first method, namely, the First Boundary Value "

Problem of Elasticity will be used, in polar coordinates. The stresses must satisfy

the equilibrium equations as well as the boundary conditions, the strains must

satisfy the compatibility equations and the stresses must be related to the strains,

by Hooke's law. A suitable Airy Stress Function can be found to satisfy the equi-

librium equations, the boundary conditons and the compatibility equations. From

the Airy Stress Function, the stresses are calculated, then strains are found using

Hooke's law and the displacements are obtained from the strain-displacement

relations and the boundary conditions. The derivations of the displacement equa-

tions due to a concentrated vertical and horizontal line load indenting a half-

space are presented in this section.

a] Vertical or Normal line load at the surface of a half-plane : (see Fig.

A.2.2).

The appropriate Airy Stress Function is

P
U -_ --r_sine

7r

1) The stresses are given by

1 8u 1 O2U
(7 _ Ar --

rr r Or r 2 0_2

a 1 aU

= - a-;(7 = o

2P cos

224,
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Then, using Hooke's law, the strains are given by

2Gerr rr 4 + _ - --

2Ger_ = arO = 0

3 - _ P(3 - x) cos 0
2Ge6a = a0e 4 (arr + a00 ) -- 2r r

(19)

(20)

(2_)

But the strains are related to the displacements by the strain-displacement equa- •

tions, given by

0u
T

2G_ = 2G
?'r Or

1 O uO 1 OUr

2G% 6 z 2G 7[ r _rr (r) + r "_-}

1 OUO

2cE_o= 2c 7 [W + u ]

(22)

(23)

(24)

Using equations (23) and (26) and integrating, we get

P

2Gu r- 2_(l+_)c°s01nr+F(0) (25)

Along the same lines, using equations (25) and (28), we get

P P

2G u o = _r (1 +x) sin0]nr-F(O)+g(r)+_(3-a)sin0 (26)

Now, using equations (24), (27), (29) and (30), we get

P 2a .#).
F(0) + F"(e) + _ (x - 1)sin _ + r _r (._--)=0 (27)

Let,

P
A = V(o)+ F"(o) +-

gl"
(_ - 1)sin 0 (28)

then

2a ,9(_),
-A = r _ t-7-) (29)
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The solution of the ordinary differential equation given by Eqn. (32) is

P

F(0) = Cl'COS o -t- C2'sin 0 + A + - l)osin 0

and the solution of the ordinary differential equation given by Eqn. (33) is

g(r) = A + B'r,

where A, B', C 1' and C 2' are constants. The displacements are found to be

2G u r -- ;[(l+,_)cos 01n r-(,_-l)cos 0+(,_-l)0sin 0J-el'sin 0+C2'cos 0

and

P

2Guo---_I(l+,@in oln r-(_-l)0cos o+(3-,@in o]-Cl'COS o-C2'sin o+B'r

E

For plane strain, 2G -- 1+_' _ = 3-4v and hence we have

1:_i +u), , .

ur -- T_'E [4(v-1)cos 01n r+2(1-2v)(cos 0-0sin 0)]+Clsin 0+C2cos 0 (30)

and

Uow
/_l+u) ....

[4(1-u)sm 01n r-2(1-2u)ocos 0+4usin 0]+Clcos 0-C2sin o+Br (31)

The constants C1, C 2 and B are calculated using the following boundary

conditions - a) Points on the vertical axis have no lateral displacement, i.e. u 0 =

0 for 0 = 0. From Eqn. (34)

C 1 + Br = 0i.e. C 1 = B = 0

b) For s = 0 and r = d, there is no vertical displacement.

i.e. (Ur)0=0,r= d = 0

From Eqn. (34), we have

(Ur)O= 0 = _[4(v-1)ln r+2(1-2v)]+C 2

Hence,

C2 -- 2_rE [4(u-1)lnr+2(1-2v)]

and we get

_ :



227

I

J

z
m

tlX "" r

L
W

m

l

m

m

B

i

I

Figure A.2.3 A concentrated horizontal force, PH, acting on the

surface of a half-plane.
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/_l+v), . .
u r -- -_-_ t4(v-1)cos 01n (r/d)-2(1-2u)Osin 0)]

and

/:_l+v), . .
2-_ [4[1--v)sin 01n (r/d)-2(1-2u)Ocos 0+2sin 0]

With Poisson's ratio, v = 0.3, Young's modulus, E = 207E9 Pa and

(I+_)
_-=9.9E-13
2_rE

u r = PvXg.gE-13 [- 2.8 cos e ln (r/d) - 0.8 0sin 0)] (32)

and

u 0 = PvXg.gE-13[ 2.8 sin 01n (r/d) -- 0.8 0cos 0+2sin 01 (33)

These are the equations used in the SUBROUTINE DISP to prescribe the bound-

ary displacements due to the vertical or normal force, PV' by transforming these

equations from polar to cartesian coordinate system, namely,

u x = UrSin 0 + u0cos 0

and

= u cos0--u0sin0uy r

b] Horizontal forc__..._eat th_._esurface of th__._ehal_._._fplane : (see Fig. A.2.3) For

this case the appropriate Airy Stress Function is also

P
U = -- rOsinO,

but the definition of 0 is different and from the earlier discussion we get the same

equations (34) and (35). The constants CI, C 2 and B are different and come out

to be :

(Ur)0=_r/2,r=d _---0. We have,

a) For o -- r/2 and r -- d, there is no vertical displacement, i.e.

b) Also, for 0:_r/2 and r : d, there is no lateral displacement i.e.

/
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(uo)o___r/2,r_____d = O.

We have,

4(1-_)ln d+4v-C2+Bd=O
au

c) And, for O = _r/2 and r = d, ('-_'O)9=r/2,r= d = O.

-4(_-1)1n d-4(1-2v)-C2=O

So,

Solving these simultaneously,

C2=-4(v-1)ln d-4(1-2v)

and

1

B=_[4(_- 1)]

The equations now are

/:_1+_')
Ur ' _ [4(u-l)cos eln (r/d)-2(1-2u)(cos e+esin 9)+,r(1--2L,)sin e]

and

P(I+,)
u¢--' g-7_ [4(1-u)sin 81n (r/d)-2(1-2u)ecos 0-i-4(1-u)sin e

4r

+.(1-2.)cos 1)]

(:+_)
Once again, 2_rE--9"995E--13 And,

Ur---PHX9.gE-13[-2.Scos 01n (r/d)-0.S(cos e+esin a)+l.256sin 8] (34)

and

2.8r

uo--PHXg_.gE-la[2.Ssin Oln_(r/d)-O.SOeos e+2.8sin 0+1.256cos 0--7- I (as)

These equations are used in the SUBROUTINE DISP to prescribe the

boundary displacements due to the horizontal force, PH' by transforming these

equations from polar to cartesian coordinate system, namely,

u z -_- ussln 0 -- UrCOS

and

= u sin 9 + uacosUy r

=

u

m

m

lib '
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APPENDIX 3

STRESS-STRAIN CONTOURS FOR 3-D ROLLING CONTACT IN AL
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Some of the stress-strain contours calculated from the three

dimensional finite element analyses of rolling contact in

aluminum alloys are presented here. Figure A.3.1 through A.3.6

show the six components of stress when the contact pressure

distribution is in the center of the mesh. Figures A.3.7 through

A.3.16 illustrate the residual stress components and the residual

plastic strain components after one contact sequence. The

miniature schematic drawing by the side of each figure represents

the sectional planes of the mesh on which the corresponding

contours are calculated.
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Figure A.3.1
Axial stress (ax) contours when the load is in
the center of the mesh.
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the center of the mesh.
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